Elliptic stability for stationary Schrodinger
equations
by
Emmanuel Hebey

Part I /VI

Building equations
March 2015

Nonlinear analysis arising from
geometry and physics
Conference in honor of Professor Abbas Bahri

Elliptic stability - Part | - Building Equations






NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.
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PART I. THE BUILDING OF EQUATIONS J

[.1) The Yamabe equation : J

Let (M, g) be a closed Riemannian manifold (compact without
boundary) of dimension n > 3. Let g be a conformal metric to g. By
definition, g = fg, where f : M — R is a smooth positive function.
Writing f = €%, for ¢ € C>°(M,R), we get that

1
Rmg = €% (ng —g® (V% — Vo Ve + 2|V<p|2g)> ,
where Rmy stands for the Riemann curvature of g and Rmj; for the

Riemann curvature of g. In this equation,

(1) V2 is the Hessian of ¢, given in local coordinates by
(V29)jj = 05 — T3 Dap, where the ['%'s are the Christoffel symbols of
the Levi-Civita connection of g,

(2) ® is the tensorial product, (Vo ® V)i = 0i¢djp in local
coordinates,

(3) ® is the Kulkarni-Nomizu product acting on two times symmetric
covariant tensor fields by (H & K),-jk, = HiKji + HyKix — HiKj — Hi K.



Let Rcg, Rcg be the Ricci curvatures of g and g. The Ricci curvatures are
the trace of the Riemann curvature. In local coordinates the components
Rjj of Rc, are given by Rj; = gaﬂR,-ajg, where the Rjjy are the
components of Rm, and the g¥'s are the components of the inverse
matrix of the matrix with components gj;. Similarly, /NR’,-J- = gaﬁf?,ajﬁ.
From the equation in the preceeding slide we get that

Rez = Reg — (n—2)VPp+ (n=2)Vo @ Vo + (Agp — (n = 2)[Vy|’) g ,
where Ag is the Laplace-Beltrami operator, given in local coordinates by
Dgu = —g1(Vu);
— g7 (33u—T50.u) .

Let Sz and Sz be the scalar curvatures of g and g, the total traces of
the corresponding Riemann curvatures. In local coordinates, S, = g/ R;;
and S; = g¥R;;. By the above equation, we get that

e*?Sz = Sy +2(n—1)Agp — (n—1)(n—2)|Vy|* .

The equation is not very pleasant, but it can easily be transformed into
a nicer equation. For this we just write that ¥ = um2, where
u € C°°(M,R) is now required to be positive.
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Then ¢ = 25 Inu and we compute

_ 20u 2 4|Vul?
(V)i = m (3”d [Vel|* = m )
205u 20;ud;u
2\ _ g4 20iug;
(V2 (n—=2u  (n—2)u?’
20gu 2|Vul?
(n=2)u  (n—2)?"

Dgp =

In the preceding equation
e??S; = Sg +2(n—1)Agp — (n—1)(n—2)|Vy]?,
the terms in |Vu|? disappear, and the equation then writes as

4 4(n—1)
U”_25§ = Sg + mAgu
The Yamabe equation is the equation which corresponds to the problem
of finding a conformal metric g to a given metric g such that

Sz = Constant. The difficult case is the focusing case for which Sz = 1.
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Summarizing, the Yamabe equation comes from conformal geometry and
the equation relating the curvatures of two conformal metrics. In our
framework (Sz = 1), the Yamabe equation (up to a positive scale factor)
reads as

-2 x
i Seu=uv*"1, (Y)

A -
st dn—1)E

where 2* = % Let H! be the Sobolev space defined as the completion
of C°(M,R) w.r.t. || - [|m given by ||lull2, = [, (IVu]* + u?) dvg. It
turns out that 2* is the critical Sobolev exponent for the embeddings H?!
into Lebesgue spaces. The Yamabe equation is Sobolev critical.

Hidehiko Yamabe
1923-1960
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[.2) The conformal Laplacian : J

The operator in the left-hand side of (Y) is the conformal Laplacian

n—2

Ly =0, + —+—
€ € 4(n-1)
In our case (focusing case), Lg needs to be positive if we want to have
positive solutions to the equation. We recall that a stationary
Schrodinger operator Az + h is positive if there exists C > 0 such that
ull2, < C [y, (IVul® + hu?) dvg for all u € H'. Another remark is that
Lg is conformally invariant.

Se -

Conformal invariance : if g and g = ¢*/("~2 g are two conformal
metrics, then .

Lgu= @™ Lg(pu)
for all u which we can differentiate two times. The following proof is
natural from the viewpoint of analysis. Essentially, the only thing which
needs to be proved is that

2
e Agu = Agu — ;(wvu)g

for all u, where (VpVu), = g“ﬁaacpagu is the scalar product w.r.t. g.



Let ¥ be any smooth function. Integrating by parts,
/ (Agu)?ﬁdVg = / (VUV?ﬁ)ngg
M M
= / (VuVi)gp?dvg
M
= /M (gpzAgu —2¢(VuV)g) dv,

2
= / (Agu - (Vchp)g> @[J(pfn%deg,
M 14
Since v is arbitrary, we get what we wanted to prove, namely that
2
wﬁAgu:Agu— ;(V@Vu)g (1)
Also we have (by direct computation) that

Ag(up) = ubgp + Agu —2(VuVp), , (2)

and we have seen that

n—2 n—2 2

)Sgw = 7_1)559"*2 : (3)

A e
sP 4(n—-1 4(n
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Then,

Ly(ug) = plgu + u (Agw n (21)5g<ﬁ> AVUV)s by (2)

nt2 n
= pn—2 Agu +u <Ag<p + 4(n_1)Sg§0) by (1)

by (3)

This proves the conformal invariance of the conformal Laplacian.

1.3) The Klein-Gordon-Maxwell-Proca equation : J

This is a construction in quantum field theory which provides a model for
the interaction between a charged relativistic matter scalar field and the
electromagnetic field that it generates. The particle field interacts with
the external field via the minimum coupling rule in a nonlinear
Klein-Gordon equation.
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The minimum coupling rule reads as

O0r — Oy + iqp and V — V — igA,
where (¢, A) gauge potential representing the electromagnetic field,
governed by the Maxwell-Proca Lagrangian. Consider the two Lagrangian
densities (to simplify the presentation we choose the pure power
nonlinearity to be critical) :

Lk (¥, , A)
_ 1|9 21 m2 .
1 A _ o 2 2
3|(os + o] = 317~ oAyl - i+ Lo
and
1|0A 21 s m: o, omi o,
CMP(%A)Q‘O%‘FVSD —§|V><A\ +7\99| —7|A| .

Here Vx = xd, x Hodge dual, d differentiation. Massive version of
KGM theory. Here 1) matter field, mg its mass, g its charge, (A, ¢) gauge
potentials representing the electromagnetic vector field, m; is the Proca
mass.
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Consider the total action functional
S(lﬁ, ‘PaA) = //(ﬁNKG + EMP) dvgdt .

Write 9 in polar form as v(x, t) = u(x, t)e*?) for u > 0 and
u,S: M x R — R. Then the total action rewrites as

stosiom =3 [ [((50) - 10ut - i)
2] [
G q@f 195 - ) e
= (\ svg|

2 2
2 m m
— |V x AP + 71|¢\2 - 21A|2> dvgdt .
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We can take the variation of S with respect to u, S, ¢, and A. For
instance, if we let w, be the volume form of (M, g), then

1
> (dc,lé\/w X A|2> (B) = /(*dA,*dB)wg (quadratic + Vx = «d)

= (71)"*1/(*dA, (*d%) x B) wy (3x = (=1)""in A1)
= /(*dA,é* B)wg (6 =(-1)""txdx in A"71)
- / (d  dA, %B) w, (Stokes formula)

= /(*5dA,*B)wg (d% = %0 in A\?)
= /(*6dA) A (%% B) (since a A (xf3) = (@, B)wg in AP)
=(-1)"! /(a«SdA) AB (bx = (=1)""1in A1)
:/(6dA, B)wg (aAB=(-1)"1BAaforac A" 3ecA)
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In particular,
1/d _
3 (g5 [19a2) o) = [ Bene)
Ay =V x Vx.

for all B, where Zg = dd, 6 codifferential. When n =3, A

Taking the variation of

8(1/5 ®, A) = //(ﬁNKG + ﬁMP) dvgdt .

with respect to u, S, ¢, and A, we then get four equations which are

written as
6t2 Ut Agu+miu=u?"1 4 ((%4—%0) —|V5—qA\2> u

5t (55 +a9) w?) = V- (VS —aA) ) =0
~V. (22 + V) +mio+q (% +qp) i’ =0 (KGMPy)

A A+8t(6t + V) + mA=q(VS — gA) v?

This is the nonlinear Klein-Gordon-Maxwell-Proca system. As m; — 0
(or letting my = 0), the nonlinear KGMP system reduces to the nonlinear

== '
Klein-Gordon-Maxwell system.



Why we do refer to Maxwell-Proca : Assume n = 3. Let the electric
field E, the magnetic induction H, the charge density p, and the current

density J be given by
0A
=— <6t + V<p> ,

H=VxA,

(5, N
p= ot qy ) qu-,
J=(VS—qA)qu*.

The two last equations in (KGMP¥) give rise to the first pair of the
Maxwell-Proca equations with respect to a matter distribution whose
charge and current density are respectively p and J.

We get for free the second pair of the Maxwell-Proca equations. By
Maxwell-Proca, we mean Maxwell equations in Proca form. To quote
Louis de Broglie : these will be "des équations du type classique de
Maxwell complétées par de petits termes contenant la masse propre”.
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In other words the two last equations in the (KGMPs)-system can be
rewritten as

V.E=p-—mip,
OE
VXH—E:J—mfA7
OH
VXxE+—=0,V.H=0.
ot

The first equation in the (KGMPr)-system is the nonlinear Klein-Gordon
matter equation. Namely

9%u

p* =P
B '

+A u—l—mou—u2 1 0

The second equation in the (KGMPr)-system is the charge continuity
equation 8t + V.J =0, which is equivalent to the Lorentz condition

dp

A
v+8t

0.

The (KGMPs)-system is equivalent to this system of 6 equations.



The equivalence between the charge continuity equation and the Lorentz
condition involves only basic computations (and uses the condition
my # 0). The Maxwell-Proca equations are written as

E
VE=p-—miyp, VxH—g—t_J mA

H
VXE+8—:O,V.H:0.
ot

The charge continuity equation states that Z +V.J = 0. Taking the
derivation of the first Maxwell equation with respect to time, and the
divergence of the second equation,

ap 0E 2&,0 0E

= x H — ’V.A
a+VJ Va+ 8+V(V )Vat+m1V

¢
mi [ V.A
— i (v.a+52)
since V.(V x H) = §(xd)H, § =+ 1dxin A}, sx =1in A%, and d> =0

so that V.(V x H) = 0. The condition m; # 0 breaks the gauge
invariance and enforces the Lorentz gauge.
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A short physics break : The Maxwell equations in Proca form are

VE=p-—myg,
0E
VXH—E:J—mfA,
H
V><E+a—:0,V.H:0.
ot

They reduce to the Maxwell equations as m; — 0. Proca (1936) was
using the Lorentz formalism. Under this form, referred to as the “modern
format”, the equations appeared for the first time in a paper by
Schrodinger : “The earth’s and the sun’s permanent magnetic fields in
the unitary field theory’ (1943). These equations have been discussed by
several physicists including, in addition to Proca and Schrodinger, people
like De Broglie, Pauli , Yukawa, and Stueckleberg. .. The whole point in
these theories is that my is nothing but than the mass of the photon : we
are talking about a theory where photons have a mass.

[1] G.T.Gillies, J.Luo, L.C.Tu, The mass of the photon, Report on
Progress in Physics, 68, 2005, 77-130.

[2] A.S.Goldhaber, M.M.Nieto, Photon and Graviton mass limits, Reviews
of Modern Physics, 82, 2010, 939-979.
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M

Alexandru Proca
1897-1955

Louis de Broglie (1950) : A partir de 1934, I'auteur du présent article a
développé une forme nouvelle de la théorie quantique du champ
électromagnétique qu'il a appelé “la Mécanique ondulatoire du photon” et qui
présentait a ses yeux |'avantage de faire plus clairement rentrer la théorie
quantique des champs dans le cadre général de la Mécanique ondulatoire des
particules a spin. Dans cette théorie, qui a été exposée dans plusieurs
Ouvrages, il a été attribué au photon une masse propre extrémement petite,
mais non nulle, et nous avons été ainsi conduit dés 1934 a prendre comme
équations de la particule de spin 1 des équations qui, mises sous forme
vectorielle, sont des équations du type classique de Maxwell complétées par de
petits termes contenant la masse propre. Des équations de méme forme ont été
ensuite proposées, en 1936, par M. Alexandre Proca, et on leur donne
aujourd'hui dans la théorie du méson le nom d'équations de Proca. En somme

ces équations sont les équations générales des particules de spin 1.
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Back to the (KGMPr)-system - The reduced form : Return to

S+ Agu+miu =2+ (5 +qp)’ — VS - gAR) u
2 (2 +qp) u?) = V. (VS — gA) 1?) =0
V(5 + V) + mip+q (5 +aqp) u? =0 (KGMP¥)
DA+ Z (2 + V) + miA=q(VS — gA) 2.
Assume A and ¢ depend on the sole spatial variables (static case), and
look for standing waves solutions u(x)e™'“*t. The fourth equation gives

that o
DA+ (P +mP)A=0.

This implies A= 0 since [(AzA,A) = [ |dAJ%. Since S = —wt the
second equation is automatically satisfied. We get a reduced system.
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The full system reduces to its first and third equation. Letting ¢ = wv,
the reduced KGMP system consisting in the first and third equations is
written as

{Ag“+m3u= v w? (qv— 1) u (KGMP,)

Agv + (m% + q2u2) v=qu?.
Here w is the phase (or temporal frequency), mg, m; > 0 are masses,

q > 0 is an electric charge, A, = —div,V is the Laplace-Beltrami
operator.

When we investigate (KGMP,) we talk about standing waves solutions
for the full (KGMPs)-system in static form.

By the u?v-term the second equation is subcritical when n = 3, critical
when n = 4, and supercritical when n > 5.
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[.4) The Einstein-Lichnerowicz equation : J

Let (X,~) be a Lorentzian manifold of dimension n+ 1. Typically n = 3,
but the dimension plays no specific role here. The Einstein equation is
traditionally written in the form

Gij = 77-11 ) (EE)
where G is the Einstein curvature tensor given by G = Rc, — %S{y, T is
the stress-energy tensor, G is the gravitational constant, and c is the
speed of light. In 3 4+ 1-dimensions we get the famous ten Einstein
equations. In a scalar field theory, the stress energy tensor is given by a
scalar field ¥ : X — R and by

1
Tj = VAV — S [V = V(W)

where V is a potential for W. For the massive Klein-Gordon field theory
we get that V(W) = I m?W2 where m represents a mass. In case ¥ =0
and V = A we get the Einstein equations in vacuum space with Einstein’s
cosmological constant. We forget about the constant in front of the
stress-energy tensor and fix 8”g =
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We let (M, g) be a closed Riemannian n-manifold, and we want to
produce solutions of the Einstein equations on a Lorentzian manifold X
having M as a spacelike hypersurface. The solution to this problem is
given by the theory of Choquet-Bruhat and Geroch and is called the
maximal Cauchy development of M.

We fix (M, g), and let also K € 2% be a symmetric (2,0)-tensor field

in M, and ¥, 7 : M — R be two smooth functions in M. We assume that

g, K, 1, and 7 satisfy the 1 + n following equations

Sg — |K[2 + (trgK)? = 72 + [ V|2 + 2V(¥) (CE)
Vg K —=VirgK =7V .

Then the result of Choquet-Bruhat and Geroch essentially gives that we
can solve the Einstein equations on a Lorentzian manifold (X, ) such
that M is a spacelike hypersurface in X, g is the induced metric on M by
v, K is the second fundamental form of M in X, and v and 7 are the
scalar field data and its normalized time derivative. These equations are
the constraint equations from general relativity.
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The first equation is a scalar equation referred to as the Hamiltonian
constraint. The second one is a vectorial equation referred to as the
momentum constraint. In particular, we have 1 + n equations and the
unknowns are g, K, ¢ and 7. So 1+ n equations, and

n(n+1)
2
unknowns. The constraint equations are highly underdetermined. This is

where the Lichnerowicz conformal method comes into the story, the
objective being to reduce the number of unknowns.

1+41+4+2x =n+n+2

The first idea is to fix the conformal class of the metric in M. This
already kills w — 1 variables. We fix gy and search g under the form
g = u*/ ("2 gy Then, according to the equation which relates the scalar
curvatures of two conformal metrics, the one we discussed before, the

Hamiltonian constraint can be rewritten as
_ n+2 4(n — 1 _ 4
o (U D agus sp0) = w9, 2V )

+uT R K2 -2

where 7 = trgK is the trace of K with respect to g, which can be
interpreted as the mean curvature of M in X.
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We define P by the equation
K=u"?P+ %uﬁgo .

As we can check, P is trace-free with respect to g. We can compute
Vg-K in terms of Vg .P, and we get that the momentum constraints

rewrite as
n—1

n

for all i. We define the conformal Killing operator Lz acting on vector
fields X by

T (vgo'P),' =

(VT),' + W(V?/)),‘

2
(ﬁgoX),j = (VJX); + (ViX)j T (Vgo-X) g,'?' )

—
and we define the conformal Laplacian Ay, by
_)
AgX = Vg (LgX)

An equation like XgOX =Y can be solved as soon as Y is orthogonal to
the conformal Killing vector fields, a conformal Killing vector field being
a solution of L5 Z = 0. On a compact manifold, Z is a conformal vector
field iff & 47 = 0.



Since P is symmetric and trace-free, Vg .P is orthogonal to any
conformal Killing vector field as we can check by writing that

/ (VP Y dvg,
M

:_/ Pio (VY ) dv,,
M

1 . . 2 .
——/ Pi. ((V“ Y) +(V'Y) - n(VgO.Y)g(’)a) dvg,
M

2
=0

as soon as Lz Y = 0. Then we can write that
P=oc+LgX,

where ¢ is a symmetric, trace-free and divergence-free (2, 0)-tensor field,
referred to as the TT-tensor. In particular, the momentum constraint
equations rewrite as

1 :
Ko X = ("an + Trw;) =
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. — 2n ~ . . .
Letting 7w = u™ »—27, the Hamiltonian and momentum constraint

equations are written as

A hu = fu? —1 4 2
{%gow o T (ELCE)
Ag X ="=ur2V1 + 7V,
where
n—2
h=——" (S — |VV[2
4(”—1) (Sgo |vw‘g0) )
n—2 n—-1,
=t (V1)
n-—2 2 | x2
“an-1) (lo + Lg X[g +7°) -

These equations are the constraint equations of general relativity in
Einstein-Lichnerowicz form. In the constant mean curvature case, referred
to as the CMC case, when 7 is taken to be constant, the two equations
in (ELCE) are independent one of another.
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The second equation in (ELCE) can be solved when #V1) is orthogonal
to the conformal Killing vector fields, or when there are no conformal
Killing vector fields. The first equation, referred to as the Einstein-scalar
field Lichnerowicz equation, reads as

a
u2*+1 )

Dgu+hu= 71 4 (EL)
The functions h, f, a are smooth. We always have a > 0 (and a > 0
when 7 # 0). In the CMC case, when V = C* (cosmological constant), f
is a constant (let's say 1 if 7 is small in front of V).

Albert Einstein
1879-1955 1915-1998
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1.5) The Kirchhoff equation : J

The Kirchhoff equation goes back to Kirchhoff in 1883. It was proposed
as an extension of the classical D'Alembert’s wave equation for the
vibration of elastic strings. The equation is one dimensional, time
dependent, and it was written as

d%u 8u2 d%u
P8t2_< /‘*‘ ) =0,

where L is the length of the string, h is the area of cross-section, E is
the young modulus (elastic modulus) of the material, p is the mass
density, and Py is the initial tension. Almost one century later, Jacques
Louis Lions returned to the equation and proposed an abstract framework
for the general Kirchhoff equation in higher dimension with external force
term. Lions equation was written as

82u 5
82 a+b |Vu| dX)AU—f(X u)
where A = — 3" 8%2_2 is the Laplace-Beltrami (Euclidean) Laplacian.
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Let (M, g) be a closed n-manifold, n > 3. Let a, b > 0 be positive real
numbers. Let h € C1(M,R) be a function. The Kirchhoff equation we
consider is written as

(a + b/ Vu|2dvg> Agu+hu=uv?"1, (K)
M

where 2* is the critical Sobolev exponent. The equation is nonlocal in
essence due to the multiplicative term in front of the Laplacian.

Gustav Kirchhoff
1824-1887
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Thank you for your attention!
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