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NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.
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PART I. THE BUILDING OF EQUATIONS

I.1) The Yamabe equation :

Let (M, g) be a closed Riemannian manifold (compact without
boundary) of dimension n ≥ 3. Let g̃ be a conformal metric to g . By
definition, g̃ = fg , where f : M → R is a smooth positive function.
Writing f = e2ϕ, for ϕ ∈ C∞(M,R), we get that

Rmg̃ = e2ϕ

(
Rmg − g ~

(
∇2ϕ−∇ϕ⊗∇ϕ+

1

2
|∇ϕ|2g

))
,

where Rmg stands for the Riemann curvature of g and Rmg̃ for the
Riemann curvature of g̃ . In this equation,

(1) ∇2ϕ is the Hessian of ϕ, given in local coordinates by
(∇2ϕ)ij = ∂2

ijϕ− Γαij ∂αϕ, where the Γk
ij ’s are the Christoffel symbols of

the Levi-Civita connection of g ,

(2) ⊗ is the tensorial product, (∇ϕ⊗∇ϕ)ij = ∂iϕ∂jϕ in local
coordinates,

(3) ~ is the Kulkarni-Nomizu product acting on two times symmetric
covariant tensor fields by (H ~ K )ijkl = HikKjl + HjlKik − HilKjk − HjkKil .
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Let Rcg ,Rcg̃ be the Ricci curvatures of g and g̃ . The Ricci curvatures are
the trace of the Riemann curvature. In local coordinates the components
Rij of Rcg are given by Rij = gαβRiαjβ , where the Rijkl are the
components of Rmg and the g ij ’s are the components of the inverse

matrix of the matrix with components gij . Similarly, R̃ij = g̃αβR̃iαjβ .
From the equation in the preceeding slide we get that

Rcg̃ = Rcg − (n− 2)∇2ϕ+ (n− 2)∇ϕ⊗∇ϕ+
(
∆gϕ− (n − 2)|∇ϕ|2

)
g ,

where ∆g is the Laplace-Beltrami operator, given in local coordinates by

∆gu = −g ij(∇2u)ij

= −g ij
(
∂2
iju − Γk

ij∂ku
)
.

Let Sg and Sg̃ be the scalar curvatures of g and g̃ , the total traces of
the corresponding Riemann curvatures. In local coordinates, Sg = g ijRij

and Sg̃ = g̃ ij R̃ij . By the above equation, we get that

e2ϕSg̃ = Sg + 2(n − 1)∆gϕ− (n − 1)(n − 2)|∇ϕ|2 .

The equation is not very pleasant, but it can easily be transformed into

a nicer equation. For this we just write that e2ϕ = u
4

n−2 , where
u ∈ C∞(M,R) is now required to be positive.
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Then ϕ = 2
n−2 ln u and we compute

(∇ϕ)i =
2∂iu

(n − 2)u

(
and |∇ϕ|2 =

4|∇u|2

(n − 2)2u2

)
,

(∇2ϕ)ij =
2∂2

iju

(n − 2)u
− 2∂iu∂ju

(n − 2)u2
,

∆gϕ =
2∆gu

(n − 2)u
+

2|∇u|2

(n − 2)u2
.

In the preceding equation

e2ϕSg̃ = Sg + 2(n − 1)∆gϕ− (n − 1)(n − 2)|∇ϕ|2 ,

the terms in |∇u|2 disappear, and the equation then writes as

u
4

n−2 Sg̃ = Sg +
4(n − 1)

(n − 2)u
∆gu .

The Yamabe equation is the equation which corresponds to the problem
of finding a conformal metric g̃ to a given metric g such that
Sg̃ = Constant. The difficult case is the focusing case for which Sg̃ = 1.
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Summarizing, the Yamabe equation comes from conformal geometry and
the equation relating the curvatures of two conformal metrics. In our
framework (Sg̃ = 1), the Yamabe equation (up to a positive scale factor)
reads as

∆gu +
n − 2

4(n − 1)
Sgu = u2?−1 , (Y )

where 2? = 2n
n−2 . Let H1 be the Sobolev space defined as the completion

of C∞(M,R) w.r.t. ‖ · ‖H1 given by ‖u‖2
H1 =

∫
M

(
|∇u|2 + u2

)
dvg . It

turns out that 2? is the critical Sobolev exponent for the embeddings H1

into Lebesgue spaces. The Yamabe equation is Sobolev critical.

Hidehiko Yamabe
1923-1960
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I.2) The conformal Laplacian :

The operator in the left-hand side of (Y ) is the conformal Laplacian

Lg = ∆g +
n − 2

4(n − 1)
Sg .

In our case (focusing case), Lg needs to be positive if we want to have
positive solutions to the equation. We recall that a stationary
Schrödinger operator ∆g + h is positive if there exists C > 0 such that
‖u‖2

H1 ≤ C
∫
M

(
|∇u|2 + hu2

)
dvg for all u ∈ H1. Another remark is that

Lg is conformally invariant.

Conformal invariance : if g and g̃ = ϕ4/(n−2)g are two conformal
metrics, then

Lg̃u = ϕ−
n+2
n−2 Lg (ϕu)

for all u which we can differentiate two times. The following proof is
natural from the viewpoint of analysis. Essentially, the only thing which
needs to be proved is that

ϕ
4

n−2 ∆g̃u = ∆gu − 2

ϕ
(∇ϕ∇u)g

for all u, where (∇ϕ∇u)g = gαβ∂αϕ∂βu is the scalar product w.r.t. g .
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Let ψ be any smooth function. Integrating by parts,∫
M

(∆g̃u)ψdvg̃ =

∫
M

(∇u∇ψ)g̃dvg̃

=

∫
M

(∇u∇ψ)gϕ
2dvg

=

∫
M

(
ϕ2∆gu − 2ϕ(∇u∇ϕ)g

)
ψdvg

=

∫
M

(
∆gu − 2

ϕ
(∇u∇ϕ)g

)
ψϕ−

4
n−2 dvg̃

Since ψ is arbitrary, we get what we wanted to prove, namely that

ϕ
4

n−2 ∆g̃u = ∆gu − 2

ϕ
(∇ϕ∇u)g (1)

Also we have (by direct computation) that

∆g (uϕ) = u∆gϕ+ ϕ∆gu − 2(∇u∇ϕ)g , (2)

and we have seen that

∆gϕ+
n − 2

4(n − 1)
Sgϕ =

n − 2

4(n − 1)
Sg̃ϕ

n+2
n−2 . (3)
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Then,

Lg (uϕ) = ϕ∆gu + u

(
∆gϕ+

n − 2

4(n − 1)
Sgϕ

)
− 2(∇u∇ϕ)g by (2)

= ϕ
n+2
n−2 ∆g̃u + u

(
∆gϕ+

n − 2

4(n − 1)
Sgϕ

)
by (1)

= ϕ
n+2
n−2 ∆g̃u +

n − 2

4(n − 1)
Sg̃uϕ

n+2
n−2 by (3)

= ϕ
n+2
n−2 Lg̃u .

This proves the conformal invariance of the conformal Laplacian.

I.3) The Klein-Gordon-Maxwell-Proca equation :

This is a construction in quantum field theory which provides a model for
the interaction between a charged relativistic matter scalar field and the
electromagnetic field that it generates. The particle field interacts with
the external field via the minimum coupling rule in a nonlinear
Klein-Gordon equation.
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The minimum coupling rule reads as
∂t → ∂t + iqϕ and ∇ → ∇− iqA,

where (ϕ,A) gauge potential representing the electromagnetic field,
governed by the Maxwell-Proca Lagrangian. Consider the two Lagrangian
densities (to simplify the presentation we choose the pure power
nonlinearity to be critical) :

LNKG (ψ,ϕ,A)

=
1

2

∣∣∣∣( ∂∂t
+ iqϕ)ψ

∣∣∣∣2 − 1

2
|(∇− iqA)ψ|2 − m2

0

2
|ψ|2 +

1

p
|ψ|2

?

and

LMP(ϕ,A) =
1

2

∣∣∣∣∂A

∂t
+∇ϕ

∣∣∣∣2 − 1

2
|∇ × A|2 +

m2
1

2
|ϕ|2 − m2

1

2
|A|2 .

Here ∇× = ?d , ? Hodge dual, d differentiation. Massive version of
KGM theory. Here ψ matter field, m0 its mass, q its charge, (A, ϕ) gauge
potentials representing the electromagnetic vector field, m1 is the Proca
mass.
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Consider the total action functional

S(ψ,ϕ,A) =

∫ ∫
(LNKG + LMP) dvgdt .

Write ψ in polar form as ψ(x , t) = u(x , t)e iS(x,t) for u ≥ 0 and
u,S : M × R→ R. Then the total action rewrites as

S(u,S , ϕ,A) =
1

2

∫ ∫ ((
∂u

∂t

)2

− |∇u|2 −m2
0u2

)
dvgdt

+
1

p

∫ ∫
updvgdt

+
1

2

∫ ∫ ((
∂S

∂t
+ qϕ

)2

− |∇S − qA|2
)

u2dvgdt

+
1

2

∫ ∫ (∣∣∣∣∂A

∂t
+∇ϕ

∣∣∣∣2 − |∇ × A|2 +
m2

1

2
|ϕ|2 − m2

1

2
|A|2

)
dvgdt .
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We can take the variation of S with respect to u, S , ϕ, and A. For
instance, if we let ωg be the volume form of (M, g), then

1

2

(
d

dA

∫
|∇ × A|2

)
.(B) =

∫
(?dA, ?dB)ωg (quadratic +∇× = ?d)

= (−1)n−1

∫
(?dA, (?d?) ? B)ωg (?? = (−1)n−1 in Λ1)

=

∫
(?dA, δ ? B)ωg (δ = (−1)n−1 ? d ? in Λn−1)

=

∫
(d ? dA, ?B)ωg (Stokes formula)

=

∫
(?δdA, ?B)ωg (d? = ?δ in Λ2)

=

∫
(?δdA) ∧ (? ? B) (since α ∧ (?β) = (α, β)ωg in Λp)

= (−1)n−1

∫
(?δdA) ∧ B (?? = (−1)n−1 in Λ1)

=

∫
(δdA,B)ωg (α ∧ β = (−1)n−1β ∧ α for α ∈ Λn−1, β ∈ Λ1)
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In particular,

1

2

(
d

dA

∫
|∇ × A|2

)
.(B) =

∫ (
∆gA,B

)
for all B, where ∆g = δd , δ codifferential. When n = 3, ∆g = ∇×∇×.
Taking the variation of

S(ψ,ϕ,A) =

∫ ∫
(LNKG + LMP) dvgdt .

with respect to u, S , ϕ, and A, we then get four equations which are
written as
∂2u
∂t2 + ∆gu + m2

0u = u2?−1 +
((

∂S
∂t + qϕ

)2 − |∇S − qA|2
)

u

∂
∂t

((
∂S
∂t + qϕ

)
u2
)
−∇.

(
(∇S − qA) u2

)
= 0

−∇.
(
∂A
∂t +∇ϕ

)
+ m2

1ϕ+ q
(
∂S
∂t + qϕ

)
u2 = 0 (KGMPf )

∆gA + ∂
∂t

(
∂A
∂t +∇ϕ

)
+ m2

1A = q (∇S − qA) u2 .

This is the nonlinear Klein-Gordon-Maxwell-Proca system. As m1 → 0
(or letting m1 = 0), the nonlinear KGMP system reduces to the nonlinear
Klein-Gordon-Maxwell system.
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Why we do refer to Maxwell-Proca : Assume n = 3. Let the electric
field E , the magnetic induction H, the charge density ρ, and the current
density J be given by

E = −
(
∂A

∂t
+∇ϕ

)
,

H = ∇× A ,

ρ = −
(
∂S

∂t
+ qϕ

)
qu2 ,

J = (∇S − qA) qu2 .

The two last equations in (KGMPf ) give rise to the first pair of the
Maxwell-Proca equations with respect to a matter distribution whose
charge and current density are respectively ρ and J.

We get for free the second pair of the Maxwell-Proca equations. By
Maxwell-Proca, we mean Maxwell equations in Proca form. To quote
Louis de Broglie : these will be “des équations du type classique de
Maxwell complétées par de petits termes contenant la masse propre”.
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In other words the two last equations in the (KGMPf )-system can be
rewritten as

∇.E = ρ−m2
1ϕ ,

∇× H − ∂E

∂t
= J −m2

1A ,

∇× E +
∂H

∂t
= 0 , ∇.H = 0 .

The first equation in the (KGMPf )-system is the nonlinear Klein-Gordon
matter equation. Namely

∂2u

∂t2
+ ∆gu + m2

0u = u2?−1 +
ρ2 − |J|2

q2u3
.

The second equation in the (KGMPf )-system is the charge continuity
equation ∂ρ

∂t +∇.J = 0, which is equivalent to the Lorentz condition

∇.A +
∂ϕ

∂t
= 0 .

The (KGMPf )-system is equivalent to this system of 6 equations.
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The equivalence between the charge continuity equation and the Lorentz
condition involves only basic computations (and uses the condition
m1 6= 0). The Maxwell-Proca equations are written as

∇.E = ρ−m2
1ϕ , ∇× H − ∂E

∂t
= J −m2

1A ,

∇× E +
∂H

∂t
= 0 , ∇.H = 0 .

The charge continuity equation states that ∂ρ
∂t +∇.J = 0. Taking the

derivation of the first Maxwell equation with respect to time, and the
divergence of the second equation,

∂ρ

∂t
+∇.J = ∇.∂E

∂t
+ m2

1

∂ϕ

∂t
+∇.(∇× H)−∇.∂E

∂t
+ m2

1∇.A

= m2
1

(
∇.A +

∂ϕ

∂t

)
since ∇.(∇× H) = δ(?d)H, δ = ?−1d? in Λ1, ?? = 1 in Λ2, and d2 = 0

so that ∇.(∇× H) = 0. The condition m1 6= 0 breaks the gauge
invariance and enforces the Lorentz gauge.
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A short physics break : The Maxwell equations in Proca form are

∇.E = ρ−m2
1ϕ ,

∇× H − ∂E

∂t
= J −m2

1A ,

∇× E +
∂H

∂t
= 0 , ∇.H = 0 .

They reduce to the Maxwell equations as m1 → 0. Proca (1936) was
using the Lorentz formalism. Under this form, referred to as the “modern
format”, the equations appeared for the first time in a paper by
Schrödinger : “The earth’s and the sun’s permanent magnetic fields in
the unitary field theory” (1943). These equations have been discussed by
several physicists including, in addition to Proca and Schrödinger, people
like De Broglie, Pauli , Yukawa, and Stueckleberg. . . The whole point in
these theories is that m1 is nothing but than the mass of the photon : we
are talking about a theory where photons have a mass.

[1] G.T.Gillies, J.Luo, L.C.Tu, The mass of the photon, Report on
Progress in Physics, 68, 2005, 77–130.
[2] A.S.Goldhaber, M.M.Nieto, Photon and Graviton mass limits, Reviews
of Modern Physics, 82, 2010, 939–979.
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Alexandru Proca
1897-1955

Louis de Broglie (1950) : A partir de 1934, l’auteur du présent article a

développé une forme nouvelle de la théorie quantique du champ

électromagnétique qu’il a appelé “la Mécanique ondulatoire du photon” et qui

présentait à ses yeux l’avantage de faire plus clairement rentrer la théorie

quantique des champs dans le cadre général de la Mécanique ondulatoire des

particules à spin. Dans cette théorie, qui a été exposée dans plusieurs

Ouvrages, il a été attribué au photon une masse propre extrêmement petite,

mais non nulle, et nous avons été ainsi conduit dès 1934 à prendre comme

équations de la particule de spin 1 des équations qui, mises sous forme

vectorielle, sont des équations du type classique de Maxwell complétées par de

petits termes contenant la masse propre. Des équations de même forme ont été

ensuite proposées, en 1936, par M. Alexandre Proca, et on leur donne

aujourd’hui dans la théorie du méson le nom d’équations de Proca. En somme

ces équations sont les équations générales des particules de spin 1.
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Back to the (KGMPf )-system - The reduced form : Return to
∂2u
∂t2 + ∆gu + m2

0u = u2?−1 +
((

∂S
∂t + qϕ

)2 − |∇S − qA|2
)

u

∂
∂t

((
∂S
∂t + qϕ

)
u2
)
−∇.

(
(∇S − qA) u2

)
= 0

−∇.
(
∂A
∂t +∇ϕ

)
+ m2

1ϕ+ q
(
∂S
∂t + qϕ

)
u2 = 0 (KGMPf )

∆gA + ∂
∂t

(
∂A
∂t +∇ϕ

)
+ m2

1A = q (∇S − qA) u2 .

Assume A and ϕ depend on the sole spatial variables (static case), and
look for standing waves solutions u(x)e−iωt . The fourth equation gives
that

∆gA + (q2u2 + m2
1)A = 0 .

This implies A ≡ 0 since
∫

(∆gA,A) =
∫
|dA|2. Since S = −ωt the

second equation is automatically satisfied. We get a reduced system.
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The full system reduces to its first and third equation. Letting ϕ = ωv ,
the reduced KGMP system consisting in the first and third equations is
written as {

∆gu + m2
0u = u2?−1 + ω2 (qv − 1)2 u

∆gv +
(
m2

1 + q2u2
)

v = qu2 .
(KGMPr )

Here ω is the phase (or temporal frequency), m0,m1 > 0 are masses,
q > 0 is an electric charge, ∆g = −divg∇ is the Laplace-Beltrami
operator.

When we investigate (KGMPr ) we talk about standing waves solutions
for the full (KGMPf )-system in static form.

By the u2v -term the second equation is subcritical when n = 3, critical
when n = 4, and supercritical when n ≥ 5.
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I.4) The Einstein-Lichnerowicz equation :

Let (X , γ) be a Lorentzian manifold of dimension n + 1. Typically n = 3,
but the dimension plays no specific role here. The Einstein equation is
traditionally written in the form

Gij =
8πG
c4

Tij , (EE)

where G is the Einstein curvature tensor given by G = Rcγ − 1
2 Sγγ, T is

the stress-energy tensor, G is the gravitational constant, and c is the
speed of light. In 3 + 1-dimensions we get the famous ten Einstein
equations. In a scalar field theory, the stress energy tensor is given by a
scalar field Ψ : X → R and by

Tij = ∇iΨ∇jΨ−
1

2
|∇Ψ|2γγij − V (Ψ)γij ,

where V is a potential for Ψ. For the massive Klein-Gordon field theory
we get that V (Ψ) = 1

2 m2Ψ2, where m represents a mass. In case Ψ ≡ 0
and V ≡ Λ we get the Einstein equations in vacuum space with Einstein’s
cosmological constant. We forget about the constant in front of the
stress-energy tensor and fix 8πG

c4 = 1.
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We let (M, g) be a closed Riemannian n-manifold, and we want to
produce solutions of the Einstein equations on a Lorentzian manifold X
having M as a spacelike hypersurface. The solution to this problem is
given by the theory of Choquet-Bruhat and Geroch and is called the
maximal Cauchy development of M.

We fix (M, g), and let also K ∈ ⊗(2,0)
s be a symmetric (2, 0)-tensor field

in M, and ψ, π : M → R be two smooth functions in M. We assume that
g ,K , ψ, and π satisfy the 1 + n following equations{

Sg − |K |2g + (trgK )2 = π2 + |∇ψ|2g + 2V (ψ)

∇g .K −∇trgK = π∇ψ .
(CE)

Then the result of Choquet-Bruhat and Geroch essentially gives that we
can solve the Einstein equations on a Lorentzian manifold (X , γ) such
that M is a spacelike hypersurface in X , g is the induced metric on M by
γ, K is the second fundamental form of M in X , and ψ and π are the
scalar field data and its normalized time derivative. These equations are
the constraint equations from general relativity.
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The first equation is a scalar equation referred to as the Hamiltonian
constraint. The second one is a vectorial equation referred to as the
momentum constraint. In particular, we have 1 + n equations and the
unknowns are g , K , ψ and π. So 1 + n equations, and

1 + 1 + 2× n(n + 1)

2
= n2 + n + 2

unknowns. The constraint equations are highly underdetermined. This is
where the Lichnerowicz conformal method comes into the story, the
objective being to reduce the number of unknowns.

The first idea is to fix the conformal class of the metric in M. This
already kills n(n+1)

2 − 1 variables. We fix g0 and search g under the form

g = u4/(n−2)g0. Then, according to the equation which relates the scalar
curvatures of two conformal metrics, the one we discussed before, the
Hamiltonian constraint can be rewritten as

u−
n+2
n−2

(
4(n − 1)

n − 2
∆g0 u + Sg0 u

)
= π2 + u−

4
n−2 |∇ψ|2g0

+ 2V (ψ)

+ u−
8

n−2 |K |2g0
− τ 2 ,

where τ = trgK is the trace of K with respect to g , which can be
interpreted as the mean curvature of M in X .
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We define P by the equation

K = u−2P +
τ

n
u

4
n−2 g0 .

As we can check, P is trace-free with respect to g . We can compute
∇g0 .K in terms of ∇g0 .P, and we get that the momentum constraints
rewrite as

u−
2n

n−2 (∇g0 .P)i =
n − 1

n
(∇τ)i + π(∇ψ)i

for all i . We define the conformal Killing operator Lg0 acting on vector
fields X by

(Lg0 X )ij = (∇jX )i + (∇iX )j −
2

n
(∇g0 .X ) g 0

ij ,

and we define the conformal Laplacian
−→
∆g0 by

−→
∆g0 X = ∇g0 . (Lg0 X ) .

An equation like
−→
∆g0 X = Y can be solved as soon as Y is orthogonal to

the conformal Killing vector fields, a conformal Killing vector field being
a solution of Lg0 Z ≡ 0. On a compact manifold, Z is a conformal vector

field iff
−→
∆g0 Z ≡ 0.
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Since P is symmetric and trace-free, ∇g0 .P is orthogonal to any
conformal Killing vector field as we can check by writing that∫

M

(∇αP)iαY idvg0

= −
∫
M

Piα(∇αY )idvg0

= −1

2

∫
M

Piα

(
(∇αY )i + (∇iY )α − 2

n
(∇g0 .Y )g iα

0

)
dvg0

= 0

as soon as Lg0 Y = 0. Then we can write that

P = σ + Lg0 X ,

where σ is a symmetric, trace-free and divergence-free (2, 0)-tensor field,
referred to as the TT -tensor. In particular, the momentum constraint
equations rewrite as

−→
∆g0 X =

(
n − 1

n
∇τ + π∇ψ

)
u

2n
n−2 .
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Letting π = u−
2n

n−2 π̃, the Hamiltonian and momentum constraint
equations are written as{

∆g0 u + hu = fu2?−1 + a
u2?+1−→

∆g0 X = n−1
n u

2n
n−2∇τ + π̃∇ψ ,

(ELCE)

where

h =
n − 2

4(n − 1)

(
Sg0 − |∇ψ|2g0

)
,

f =
n − 2

4(n − 1)

(
2V (ψ)− n − 1

n
τ 2

)
,

a =
n − 2

4(n − 1)

(
|σ + Lg0 X |2g0

+ π̃2
)
.

These equations are the constraint equations of general relativity in
Einstein-Lichnerowicz form. In the constant mean curvature case, referred
to as the CMC case, when τ is taken to be constant, the two equations
in (ELCE) are independent one of another.
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The second equation in (ELCE) can be solved when π̃∇ψ is orthogonal
to the conformal Killing vector fields, or when there are no conformal
Killing vector fields. The first equation, referred to as the Einstein-scalar
field Lichnerowicz equation, reads as

∆gu + hu = fu2?−1 +
a

u2?+1
, (EL)

The functions h, f , a are smooth. We always have a ≥ 0 (and a > 0
when π 6= 0). In the CMC case, when V ≡ C t (cosmological constant), f
is a constant (let’s say 1 if τ is small in front of V ).

Albert Einstein André Lichnerowicz
1879-1955 1915-1998
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I.5) The Kirchhoff equation :

The Kirchhoff equation goes back to Kirchhoff in 1883. It was proposed
as an extension of the classical D’Alembert’s wave equation for the
vibration of elastic strings. The equation is one dimensional, time
dependent, and it was written as

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

|∂u

∂x
|2dx

)
∂2u

∂x2
= 0 ,

where L is the length of the string, h is the area of cross-section, E is
the young modulus (elastic modulus) of the material, ρ is the mass
density, and P0 is the initial tension. Almost one century later, Jacques
Louis Lions returned to the equation and proposed an abstract framework
for the general Kirchhoff equation in higher dimension with external force
term. Lions equation was written as

∂2u

∂t2
+
(

a + b

∫
Ω

|∇u|2dx
)

∆u = f (x , u)

where ∆ = −
∑

∂2

∂x2
i

is the Laplace-Beltrami (Euclidean) Laplacian.
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Let (M, g) be a closed n-manifold, n ≥ 3. Let a, b > 0 be positive real
numbers. Let h ∈ C 1(M,R) be a function. The Kirchhoff equation we
consider is written as(

a + b

∫
M

|∇u|2dvg

)
∆gu + hu = u2?−1 , (K )

where 2? is the critical Sobolev exponent. The equation is nonlocal in
essence due to the multiplicative term in front of the Laplacian.

Gustav Kirchhoff
1824-1887
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Thank you for your attention !
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