Elliptic stability for stationary Schrödinger equations
by
Emmanuel Hebey

Part II/VI
An introduction to elliptic stability
March 2015

Nonlinear analysis arising from geometry and physics Conference in honor of Professor Abbas Bahri

PART II. AN INTRODUCTION TO ELLIPTIC STABILITY. II.1) The model equation. II.2) Equations behind the model equation. II.3) A first insight into elliptic stability. II.4) The subcritical world.

II.5) More precise definitions are needed in the critical world.

NOTE: The blue writing is what you have to write down to be able to follow the slides presentation.

PART II. AN INTRODUCTION TO ELLIPTIC STABILITY.

II.1) The model equation:

(M,g) smooth compact, $\partial M=\emptyset$ (closed manifold), $n\geq 3$.

Model equation
$$\Delta_g u + hu = u^{p-1}$$
 (E_h) Varying h's

Here : $u \geq 0$, $\Delta_g = -{\rm div}_g \nabla$, $h \in C^{0,\theta}$ (typically), $p \in (2,2^*]$, where $2^* = \frac{2n}{n-2}$ is the critical Sobolev exponent. H^1 Sobolev space of functions in L^2 with one derivative in L^2 . Then $H^1 \subset L^p$ for all $p \leq 2^*$, and

$$H^1 \subset L^p$$
 is compact when $p < 2^*$, but not when $p = 2^*$. \checkmark

Subcritical "world" \neq Critical "world" $p < 2^*$ $p = 2^*$

Question: How much is (E_h) robust with respect to h?

II.2) Equations behind the model equation :

- The Yamabe equation
- The stationary Klein-Gordon-Maxwell-Proca system
- The Einstein-Lichnerowicz equation
- The Kirchhoff equation

The Yamabe equation is obviously of the (E_h) -type. It is written as

$$\Delta_g u + \frac{n-2}{4(n-1)} S_g u = u^{2^*-1} . \tag{Y}$$

We get an equation like (E_h) , where

$$h=\frac{n-2}{4(n-1)}S_g$$

is given by the geometry of the manifold (and $p=2^*$ is critical). As we saw, the LHS in (Y) is the conformal Laplacian (and it enjoys conformal invariance).

The stationary Klein-Gordon-Maxwell-Proca system in reduced form is also of the (E_h) -type. The $(KGMP_r)$ -system is written as

$$\begin{cases} \Delta_{g} u + m_{0}^{2} u = u^{2^{*}-1} + \omega^{2} (qv - 1)^{2} u \\ \Delta_{g} v + (m_{1}^{2} + q^{2} u^{2}) v = qu^{2} \end{cases}$$
 (KGMP_r)

We can always solve the equation

$$\Delta_g \Phi(u) + (m_1^2 + q^2 u^2) \Phi(u) = q u^2$$

and we get a map $\Phi: H^1 \to H^1$. Then the $(KGMP_r)$ -system reduces to the first equation

$$\Delta_g u + m_0^2 u = u^{2^*-1} + \omega^2 (q\Phi(u) - 1)^2 u.$$

The solutions of the system are the couples $(u, \Phi(u))$. We get an equation like (E_h) , where h is now given by

$$h = m_0^2 - \omega^2 (q\Phi(u) - 1)^2$$
.

In particular, h depends on u, and (in the 3d-model) h turns out to be controlled in $C^{0,\theta}$ -topologies.

The Einstein-scalar field Lichnerowicz equation corresponds to the Hamiltonian constraint in the constraint equations in the conformal method setting (Lichnerowicz). The two constraint equations

(Hamiltonian + Momentum) are written (conformal method setting) as :

$$\begin{cases} \Delta_g u + h_0 u = f u^{2^{\star} - 1} + \frac{a}{u^{2^{\star} + 1}} & \text{(EL)} \\ \overrightarrow{\Delta}_g X = \frac{n - 1}{n} u^{2^{\star}} \nabla \tau - \pi \nabla \psi & \text{(MC)} \end{cases}$$

where h_0 , f and a are given (depending on the geometry and physics data), u is an unknown function, X is an unknown vector field, and $\overrightarrow{\Delta}_g = \nabla . \mathcal{L}$ (\mathcal{L} the conformal Killing operator). The (EL)-equation is the Einstein-Lichnerowicz equation. It is highly nonlinear and, in the CMC-case (where $\tau = C^{st}$) it fully describes the (CE)-system, since then the two equations are independent (and (MC) is a "basic" Laplace type equation).

The negative power term in (EL) \Rightarrow there exists $\varepsilon_0 > 0$ s.t. $u \geq \varepsilon_0$ for all solution of the Hamiltonian constraint. A very basic argument when a>0 is as follows: let x_0 be a point where u is minimum. Then $\Delta_g u(x_0) \leq 0$ and we get from (EL) that

$$\frac{a(x_0)}{u(x_0)^{2^*+1}} + f(x_0)u(x_0)^{2^*-1} \le h_0(x_0)u(x_0)$$

and when a > 0 this obviously implies that there exists $\varepsilon_0 > 0$, independent of u, such that $u \ge \varepsilon_0$ in M.

In specific cases $f \equiv 1$. Then we recover an equation like (E_h) , where

$$h=h_0-\frac{a}{u^{2^{\star}+2}}.$$

In particular h depends again on u, and h is here controlled in the L^{∞} -topology.

The Kirchhoff equation is written as

$$\left(a+b\int_{M}|\nabla u|^{2}dv_{g}\right)\Delta_{g}u+h_{0}u=u^{2^{\star}-1},\qquad (K)$$

where a,b>0 are positive real numbers and $h_0\in C^1(M,\mathbb{R})$. Let $K(u)=a+b\int_M |\nabla u|^2 dv_g$, and define $v=K(u)^{-\frac{1}{2^*-2}}u$. Then

$$\Delta_g v + h v = v^{2^*-1} ,$$

and we recover an equation like (E_h) , where $h = \frac{h_0}{K(u)}$. Here again h depends on u, and h is in this case controlled in the C^1 -topology.

Moral: There are several models hidden in our model equation (E_h) when h depends on the solution u. The sole control on the set in which h varies will have to matter in our approach.

II.3) A first insight into elliptic stability :

Consider equations like

$$\Delta_{g} u = f(x, u) , \qquad (E)$$

where $f: M \times \mathbb{R} \to \mathbb{R}$ is given, and the Laplacian $\Delta_g = - \text{div}_g \nabla$ is the Laplace-Beltrami operator.

Goal: define the stability (robustness) of (E) with respect to f.

Let S_f be the set of solutions of (E). Let \mathcal{P} be a set of perturbations of f, namely a family of functions $\tilde{f}: M \times \mathbb{R} \to \mathbb{R}$ such that $f \in \mathcal{P}$. For the sake of simplicity we assume $S_{\tilde{f}} \subset C^2$ for all $\tilde{f} \in \mathcal{P}$. Define the pointed distance between subsets of C^2 by

$$d_{C^2}^{\hookrightarrow}(X;Y) = \sup_{v \in X} \inf_{u \in Y} \|v - u\|_{C^2} ,$$

and we adopt the conventions that $d_{C^2}^{\hookrightarrow}(X;\emptyset) = +\infty$ if $X \neq \emptyset$, and $d_{C^2}^{\hookrightarrow}(\emptyset;Y) = 0$ for all Y. Then, $d_{C^2}^{\hookrightarrow}(X;Y) = 0$ iff $X \subset \overline{Y}$, and $d_{C^2}^{\hookrightarrow}$ satisfies the triangle inequality

$$d_{C^2}^{\hookrightarrow}(X;Z) \leq d_{C^2}^{\hookrightarrow}(X;Y) + d_{C^2}^{\hookrightarrow}(Y;Z)$$

for all $X, Y, Z \subset C^2$.

We consider

$$\Delta_g u = f(x, u) , \qquad (E)$$

and define two notions of stability for (E).

Definition: (Geometric and Analytic stability)

Equation (*E*) is geometrically stable with respect to a set \mathcal{P} of perturbations of f and a norm $\|\cdot\|_{\mathcal{P}}$ on \mathcal{P} if

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall \tilde{f} \in \mathcal{P}, \|\tilde{f} - f\|_{\mathcal{P}} < \delta \implies d_{C^2}^{\hookrightarrow}(S_{\tilde{f}}; S_f) < \varepsilon ;$$

Equation (E) is analytically stable with respect to $\mathcal P$ and $\|\cdot\|_{\mathcal P}$ if for any sequence $(f_{\alpha})_{\alpha}$ in $\mathcal P$, converging to f w.r.t. $\|\cdot\|_{\mathcal P}$ as $\alpha \to +\infty$, and any sequence $(u_{\alpha})_{\alpha}$ of solutions of $\Delta_g u_{\alpha} = f_{\alpha}(\cdot,u_{\alpha})$ in M, there holds that, up to a subsequence, $u_{\alpha} \to u$ in C^2 as $\alpha \to +\infty$, where u solves (E).

Geometric stability expresses the fact that S_f is stable with respect to perturbations of f. It corresponds to the continuity in $\mathcal P$ of the function $\widetilde f \to d_{C^2}^{\hookrightarrow}(S_{\widetilde f};S_f)$. It is easily checked (by contradiction) that :

Analytic stability \Rightarrow Geometric stability.

The converse is false in general as we can prove below.

An example of a geometrically stable equation which turns out to be not analytically stable: Let $\lambda_1 \in \operatorname{Sp}(\Delta_g)$ be the first nonzero eigenvalue of Δ_g , $\lambda_1 > 0$. Let $u_0 \not\equiv 0$ and $f_0 \not\equiv 0$ be smooth functions satisfying that $\Delta_g u_0 - \lambda_1 u_0 = f_0$, and consider the equation

$$\Delta_g u - \lambda_1 u = f_0 . (E')$$

Then u_0 solves (E'). We let $\mathcal{P} = \left\{ \tilde{f}(\cdot, u) = f(\cdot) + \lambda u, \lambda \in \mathbb{R}, f \in C^{0,\theta} \right\}$, and define $\|\cdot\|_{\mathcal{P}}$ by

$$\|\tilde{f}\|_{\mathcal{P}} = |\lambda| + \|f\|_{\mathcal{C}^{0,\theta}}.$$

In other words, we perturb (E') by perturbing λ_1 and f_0 in $\mathbb{R} \times C^{0,\theta}$.

Claim 1: (E') is not analytically stable (and not even compact). We see this by picking $\varphi \not\equiv 0$ in the eigenspace associated to λ_1 . We let $(k_\alpha)_\alpha$ be a sequence of positive real numbers s.t. $k_\alpha \to +\infty$ as $\alpha \to +\infty$. We define

$$u_{\alpha} = u_0 + k_{\alpha} \varphi$$
.

Obviously, the u_{α} 's all solve (E'). However $||u_{\alpha}||_{L^{\infty}} \to +\infty$ as $\alpha \to +\infty$, and this contradicts the analytic stability of (E').

Claim 2: We claim that (E') is geometrically stable (w.r.t. perturbations of λ_1 and f_0 in $\mathbb{R} \times C^{0,\theta}$). We prove this by contradiction. Then there exists $\varepsilon_0 > 0$, a sequence $(\lambda_\alpha)_\alpha \in \mathbb{R}$ such that $\lambda_\alpha \to \lambda_1$ as $\alpha \to +\infty$, and a sequence $(f_\alpha)_\alpha \in C^{0,\theta}$ such that $f_\alpha \to f_0$ in $C^{0,\theta}$ as $\alpha \to +\infty$, with the property that

$$d_{C^2}^{\hookrightarrow}(S_{(\lambda_{\alpha},f_{\alpha})};S_{(\lambda_1,f_0)}) \geq \varepsilon_0 , \qquad (\star)$$

where $S_{(\lambda,f)}$ stands for the set of solutions of $\Delta_g u - \lambda u = f$ (so that $S_{(\lambda_1,f_0)}$ is precisely the set of solutions of (E')). In particular, it follows from (\star) that there exists a sequence $(u_\alpha)_\alpha$ of C^2 -functions such that

$$\Delta_{g} u_{\alpha} - \lambda_{\alpha} u_{\alpha} = f_{\alpha} \tag{E_{\alpha}}$$

for all α , and such that $d_{C^2}(u_\alpha; S_{(\lambda_1,f_0)}) \geq \frac{\varepsilon_0}{2}$ for all α .Let E_{λ_1} be the eigenspace of Δ_g associated to λ_1 . We know E_{λ_1} is finite dimensional. We let $\varphi_1,\ldots,\varphi_k$ be a L^2 -orthonormal basis for E_{λ_1} , and let v_α and φ_α be given by

$$v_{\alpha} = u_{\alpha} - \sum_{i=1}^{k} \lambda_{\alpha}^{i} \varphi_{i} , \ \varphi_{\alpha} = \sum_{i=1}^{k} \lambda_{\alpha}^{i} \varphi_{i} .$$

We choose the λ_{α}^i 's such that $v_{\alpha} \in \mathcal{E}_{\lambda_1}^{\perp_{L^2}}$ (namely $\lambda_{\alpha}^i = \int u_{\alpha} \varphi_i$). We claim that

$$\lim_{\alpha \to +\infty} (\lambda_{\alpha} - \lambda_{1}) \varphi_{\alpha} = 0 \text{ in } C^{0,\theta}.$$
 (P)

We prove (P). Since (E') has a solution $u_0 \not\equiv 0$, integrating (E') against $\varphi \in E_{\lambda_1}$ there holds that $f_0 \in E_{\lambda_1}^{\perp_{L^2}}$. Then, by (E_{α}) ,

$$\int f_{\alpha}\varphi_{i} = \int (\Delta_{g}u_{\alpha} - \lambda_{\alpha}u_{\alpha})\varphi_{i}$$

$$= \int u_{\alpha} (\Delta_{g}\varphi_{i} - \lambda_{\alpha}\varphi_{i})$$

$$= (\lambda_{1} - \lambda_{\alpha}) \int u_{\alpha}\varphi_{i}$$

$$= (\lambda_{1} - \lambda_{\alpha}) \lambda_{\alpha}^{i},$$

and since $f_{\alpha} \to f_0$ in $C^{0,\theta}$, and $f_0 \in E_{\lambda_1}^{\perp_{\iota^2}}$, we get that $(\lambda_1 - \lambda_{\alpha}) \lambda_{\alpha}^i \to 0$, and thus that $(\lambda_{\alpha} - \lambda_1) \varphi_{\alpha} \to 0$ smoothly. This proves (P).

Now that we have (P), we let $\lambda_2 > \lambda_1$ be the second eigenvalue for Δ_g . By the variational characterisation of λ_2 ,

$$\lambda_2 \le \frac{\int |\nabla v_{\alpha}|^2}{\int |v_{\alpha} - \overline{v}_{\alpha}|^2} \tag{1}$$

for all α , where $v_{\alpha}=u_{\alpha}-\varphi_{\alpha}$ is as above, and \overline{v}_{α} is the average of v_{α} . The point here is that $v_{\alpha}-\overline{v}_{\alpha}$ is L^2 -orthogonal both to the constants and to E_{λ_1} .

Since functions in E_{λ_1} has zero average, we get from the definition of v_{α} that $\overline{v}_{\alpha} = \overline{u}_{\alpha}$. Then, by (E_{α}) , $\overline{v}_{\alpha} = \overline{u}_{\alpha} = O(1)$. Still by (E_{α}) there holds that

$$\Delta_{g} v_{\alpha} - \lambda_{\alpha} v_{\alpha} = f_{\alpha} + (\lambda_{\alpha} - \lambda_{1}) \varphi_{\alpha}$$
 (E'_{\alpha})

for all α . Then, by (*I*) and (E'_{α}), using that $\overline{v}_{\alpha} = O(1)$ and that $\int (v_{\alpha} - \overline{v}_{\alpha}) = 0$, we get that

$$\int v_{\alpha}^{2} = \int v_{\alpha}(v_{\alpha} - \overline{v}_{\alpha}) + O(1)$$

$$= \int (v_{\alpha} - \overline{v}_{\alpha})^{2} + O(1)$$

$$\leq \frac{1}{\lambda_{2}} \int |\nabla v_{\alpha}|^{2} + O(1)$$

$$= \frac{\lambda_{\alpha}}{\lambda_{2}} \int v_{\alpha}^{2} + \frac{1}{\lambda_{2}} \int f_{\alpha}v_{\alpha} + \frac{\lambda_{\alpha} - \lambda_{1}}{\lambda_{2}} \int \varphi_{\alpha}v_{\alpha} + O(1)$$

$$\leq \frac{\lambda_{\alpha}}{\lambda_{2}} \int v_{\alpha}^{2} + O(\|v_{\alpha}\|_{L^{2}}) + O(1)$$

for all α . Since $\lambda_{\alpha} \to \lambda_1$ and $\lambda_1 < \lambda_2$, it follows that $\|v_{\alpha}\|_{L^2} = O(1)$. Then, by (E'_{α}) , and standard elliptic theory, since $(\lambda_{\alpha} - \lambda_1)\varphi_{\alpha} \to 0$ smoothly by (P), we get that the v_{α} 's are bounded in H^1 and that, up to a subsequence, $v_{\alpha} \to v$ in C^2 , where v solves (E').

Now, at this point, we let $w = v - u_0$, and

$$w_{\alpha}=u_0+w+\varphi_{\alpha}.$$

There holds that $w \in E_{\lambda_1}$ since u_0 and v both solve (E'). Since $v_\alpha \to v$ in C^2 , and $v_\alpha = u_\alpha - \varphi_\alpha$, we get that $u_\alpha - \varphi_\alpha \to u_0 + w$ in C^2 (note that $v = u_0 + w$), and thus that

$$\|u_{\alpha}-w_{\alpha}\|_{C^2}\to 0 \tag{**}$$

as $\alpha \to +\infty$ (since $u_{\alpha} - w_{\alpha} = u_{\alpha} - \varphi_{\alpha} - u_{0} - w$). There holds that

$$\Delta_g w_\alpha - \lambda_1 w_\alpha = f_0 \qquad (\star \star \star)$$

for all α , since $w, \varphi_{\alpha} \in E_{\lambda_1}$ and u_0 solve (E'). Therefore, by $(\star\star)$ and $(\star\star\star)$,

$$d_{C^2}(u_\alpha;S_{(\lambda_1,f_0)})\to 0$$

as $\alpha \to +\infty$, and this contradicts the (\star) contradiction assumption that $d_{C^2}(u_\alpha; S_{(\lambda_1, f_0)}) \geq \frac{\varepsilon_0}{2}$. This ends the proof of Claim 2.

By Claims 1 and 2, (E') is geometrically stable but not analytically stable. Q.E.D.

II.4) The subcritical world:

Let (M, g) smooth compact, $\partial M = \emptyset$, $n \ge 3$, and consider our nonlinear model equation in the subcritical setting. Namely,

$$\Delta_g u + h u = u^{p-1} , \qquad (E_h)$$

 $u \geq 0$, $p \in (2, 2^*)$. When h is such that $\Delta_g + h$ is coercive, (E_h) possesses a nontrivial (minimal) solution. Conversely, if (E_h) has a nontrivial solution, then $\Delta_g + h$ is coercive.

We perturb (E_h) with respect to h, e.g. in Hölder spaces $C^{0,\theta}$, $\theta \in (0,1)$, and say for short that (E_h) is analytically stable if for any sequences $(h_{\alpha})_{\alpha}$ in $C^{0,\theta}$, and $(u_{\alpha})_{\alpha}$ in C^2 , satisfying that

$$\begin{cases} \Delta_g u_{\alpha} + h_{\alpha} u_{\alpha} = u_{\alpha}^{p-1} \text{ for all } \alpha, \\ u_{\alpha} \ge 0 \text{ in } M \text{ for all } \alpha, \\ h_{\alpha} \to h \text{ in } C^{0,\theta} \text{ as } \alpha \to +\infty, \end{cases}$$
 (E_{α})

there holds that, up to a subsequence, $u_{\alpha} \to u$ in C^2 for some solution u of (E_h) . This is the analytic stability notion we defined above, for nonnegative solutions, a set \mathcal{P} of \tilde{f} given by $\tilde{f}(\cdot,u)=u^{p-1}-\tilde{h}(\cdot)u$, with $\tilde{h} \in C^{0,\theta}$, and $\|\tilde{f}\|_{\mathcal{P}}=\|\tilde{h}\|_{C^{0,\theta}}$. Then :

Theorem: (Subcritical stability, Gidas-Spruck, 81)

For any closed manifold (M,g), $n \ge 3$, and any $h \in C^{0,\theta}$ such that $\Delta_g + h$ is coercive, (E_h) is analytically stable.

<u>Proof</u> (Baby blow-up theory) : By contradiction, there exist $(h_{\alpha})_{\alpha}$ and $(u_{\alpha})_{\alpha}$ s.t.

$$\Delta_{g} u_{\alpha} + h_{\alpha} u_{\alpha} = u_{\alpha}^{p-1} \tag{E_{h_{\alpha}}}$$

in M for all α , the h_{α} 's converge, and $\|u_{\alpha}\|_{L^{\infty}} \to +\infty$. Let x_{α} be s.t. $u_{\alpha}(x_{\alpha}) = \max_{M} u_{\alpha}$. Let $\mu_{\alpha} = \|u_{\alpha}\|_{L^{\infty}}^{-(p-2)/2}$. Then $\mu_{\alpha} \to 0$. Define

$$\tilde{u}_{\alpha}(x) = \mu_{\alpha}^{\frac{2}{p-2}} u_{\alpha} \left(\exp_{x_{\alpha}}(\mu_{\alpha}x) \right) ,$$

where $x \in \mathbb{R}^n$. By construction, $\tilde{u}_{\alpha}(0) = 1$ and $0 \leq \tilde{u}_{\alpha} \leq 1$ for all α . Then

$$\Delta_{\tilde{g}_{\alpha}}\tilde{u}_{\alpha} + \mu_{\alpha}^{2}\tilde{h}_{\alpha}\tilde{u}_{\alpha} = \tilde{u}_{\alpha}^{p-1} , \qquad (\tilde{E}_{h_{\alpha}})$$

where $\tilde{g}_{\alpha}(x)=\left(\exp_{\chi_{\alpha}}^{\star}g\right)\left(\mu_{\alpha}x\right)$, and $\tilde{h}_{\alpha}(x)=h_{\alpha}\left(\exp_{\chi_{\alpha}}(\mu_{\alpha}x)\right)$. There holds $\tilde{g}_{\alpha}\to\delta$ in $C^{2}_{loc}(\mathbb{R}^{n})$. Since $\|\tilde{u}_{\alpha}\|_{L^{\infty}}\leq 1$, standard elliptic theory \Rightarrow the \tilde{u}_{α} 's converge in $C^{2}_{loc}(\mathbb{R}^{n})$. Let \tilde{u} be their limit. Then $\Delta \tilde{u}=\tilde{u}^{p-1}$. By construction $\tilde{u}(0)=1$. And we get a contradiction with the Liouville theorem of Gidas and Spruck : the equation $\Delta u=u^{p-1}$ doesn't have nonnegative nontrivial solutions in \mathbb{R}^{n} when $p<2^{\star}$. Q.E.D.

II.5) More precise definitions are needed in the critical world :

Let (M,g) closed, $n \geq 3$. For $k \in \mathbb{N}$, and $\theta \in [0,1]$, we adopt the convention that $C^{k,0} = C^k$. Given $h \in C^{k,\theta}$, we consider our model equation in the critical case

$$\Delta_{g}u + hu = u^{2^{\star}-1} , \qquad (E_{h})$$

 $u \ge 0$, and we plan to perturb (E_h) with respect to h in $C^{k,\theta}$ (as in the subcritical case).

We adopt here the more refined following terminology by splitting analytic stability into three notions of analytic stability involving energy. We define:

- $C^{k,\theta}$ -analytic Λ -stability,
- $C^{k,\theta}$ -analytic stability,
- $C^{k,\theta}$ -bounded stability,

by playing with the energy $E(u) = \int_M |u|^{2^*} dv_g$ which, for solutions u of equations like (E_h) , turns out to be equivalent to $||u||_{H^1}^2$.

As in the subcritical case, the existence of a nontrivial solution $u \ge 0$ to (E_h) implies that $\Delta_g + h$ is coercive (a natural assumption we will face several time in the forthcoming slides).

Definition: (Analytic stability in the critical case)

Let $\Lambda>0$. Equation (E_h) is $C^{k,\theta}$ -analytically Λ -stable if for any sequence $(h_\alpha)_\alpha$ in $C^{k,\theta}$ such that $h_\alpha\to h$ in $C^{k,\theta}$ as $\alpha\to+\infty$, and any sequence $(u_\alpha)_\alpha$, $u_\alpha\geq 0$, such that

$$\Delta_{g} u_{\alpha} + h_{\alpha} u_{\alpha} = u_{\alpha}^{2^{*}-1} \tag{E}_{h_{\alpha}}$$

in M for all α , satisfying that $\int_M u_\alpha^{2^\star} dv_g \leq \Lambda$ for all α , there holds that, up to a subsequence, $u_\alpha \to u$ in C^2 as $\alpha \to +\infty$ for some solution u of (E_h) . Equation (E_h) is $C^{k,\theta}$ -analytically stable if it is $C^{k,\theta}$ -analytically Λ -stable for all $\Lambda > 0$. Equation (E_h) is $C^{k,\theta}$ -bounded and stable if it is $C^{k,\theta}$ -analytically ∞ -stable.

This definition has a natural companion dealing with compactness.

Definition: (Compactness)

Let $\Lambda > 0$. Equation (E_h) is Λ -compact if any sequence $(u_\alpha)_\alpha$, $u_\alpha \geq 0$, of solutions of (E_h) satisfying that $\int_M u_\alpha^{2^*} dv_g \leq \Lambda$ for all α , has a subsequence which converges in C^2 to a solution of (E_h) . Equation (E_h) is **compact** if it is Λ -compact for all $\Lambda > 0$. Equation (E_h) is **bounded** and compact if it is ∞ -compact.

Rk1: The analytic stability notions are ordered (bounded stability \Rightarrow analytic stability \Rightarrow analytic Λ -stability for all $\Lambda > 0$) and the more we increase k, the less we actually demand ($C^{k',\theta}$ -stability \Rightarrow $C^{k,\theta}$ -stability if $k' \leq k$).

Rk2: We have that stability \Rightarrow compactness ($C^{k,\theta}$ -bounded stability \Rightarrow bounded compactness, $C^{k,\theta}$ -analytic stability \Rightarrow compactness, $C^{k,\theta}$ -analytic Λ -stability \Rightarrow Λ -compactness for all $\Lambda > 0$, for all k and θ).

The difference between stability and compactness turns out be precisely the notion of geometric stability that we discussed in II.3, and we have that Analytic stability = Geometric stability + Compactness.

Proposition: (Analyt.Stab. = Geom.Stab. + Cptness)

Let $k \in \mathbb{N}$, $\theta \in [0,1]$, and $\Lambda > 0$. Equation (E_h) is $C^{k,\theta}$ -analytically Λ -stable if and only if

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall \tilde{h} \in C^{k,\theta}, \ \|\tilde{h} - h\|_{C^{k,\theta}} \ \Rightarrow \ d_{C^2}^{\hookrightarrow} \left(S_{\tilde{h}}^{\Lambda}; S_h^{\Lambda}\right) < \varepsilon \ \left(GS\right)$$

and (E_h) is Λ -compact, where $S_{\tilde{h}}^{\Lambda}$ is the set of the solutions u of $(E_{\tilde{h}})$ which satisfy that $E(u) \leq \Lambda$.

Proof of the Proposition : The implication "Analyt.Stab. \Rightarrow Geom.Stab. + Cptness" is obvious. Conversely, we assume (GS) and that (E_h) is Λ -compact. Let $(h_\alpha)_\alpha$ be a sequence in $C^{k,\theta}$ such that $h_\alpha \to h$ in $C^{k,\theta}$. Let also $(u_\alpha)_\alpha$ be such that the u_α 's solve (E_{h_α}) and satisfy that $E(u_\alpha) \le \Lambda$ for all α . By (GS) there exists a sequence $(v_\alpha)_\alpha$ in S_h^Λ such that $\|v_\alpha - u_\alpha\|_{C^2} \to 0$ as $\alpha \to +\infty$. By the Λ -compactness of (E_h) , since the v_α 's are all in S_h^Λ , we also have that there exists $v \in S_h^\Lambda$ such that, up to a subsequence, $v_\alpha \to v$ in C^2 as $\alpha \to +\infty$. Then we clearly get that, up to a subsequence, $u_\alpha \to v$ in C^2 as $\alpha \to +\infty$, and this proves the $C^{k,\theta}$ -analytic Λ -stability of (E_h) . Q.E.D.

Anticipating on what we are going to discuss in Part IV, the following proposition holds true.

There are equations like (E_h) which are compact but unstable.

There are sophisticated examples of such a fact, but also very easy examples like the Yamabe equation in the projective space $\mathbb{P}^n(\mathbb{R})$ when $n \geq 6$. As proved in II.4, the situation described in the proposition does not occur in the subcritical case of (E_h) .

