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NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.
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PART II. AN INTRODUCTION TO ELLIPTIC STABILITY.

II.1) The model equation :

(M, g) smooth compact, ∂M = ∅ (closed manifold), n ≥ 3.

Model equation
∆gu + hu = up−1 (Eh)

Varying h’s

Here : u ≥ 0, ∆g = −divg∇, h ∈ C 0,θ (typically), p ∈ (2, 2?], where
2? = 2n

n−2 is the critical Sobolev exponent. H1 Sobolev space of functions

in L2 with one derivative in L2. Then H1 ⊂ Lp for all p ≤ 2?, and

H1 ⊂ Lp is compact when p < 2?,
but not when p = 2?.

↙ ↘

Subcritical “world” 6= Critical “world”
p < 2? p = 2?

Question : How much is (Eh) robust with respect to h ?
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II.2) Equations behind the model equation :

- The Yamabe equation
- The stationary Klein-Gordon-Maxwell-Proca system
- The Einstein-Lichnerowicz equation
- The Kirchhoff equation

The Yamabe equation is obviously of the (Eh)-type. It is written as

∆gu +
n − 2

4(n − 1)
Sgu = u2?−1 . (Y )

We get an equation like (Eh) , where

h =
n − 2

4(n − 1)
Sg

is given by the geometry of the manifold (and p = 2? is critical). As we
saw, the LHS in (Y ) is the conformal Laplacian (and it enjoys conformal
invariance).
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The stationary Klein-Gordon-Maxwell-Proca system in reduced form is
also of the (Eh)-type. The (KGMPr )-system is written as{

∆gu + m2
0u = u2?−1 + ω2(qv − 1)2u

∆gv +
(
m2

1 + q2u2
)
v = qu2 .

(KGMPr )

We can always solve the equation

∆gΦ(u) + (m2
1 + q2u2)Φ(u) = qu2

and we get a map Φ : H1 → H1. Then the (KGMPr )-system reduces to
the first equation

∆gu + m2
0u = u2?−1 + ω2 (qΦ(u)− 1)2 u .

The solutions of the system are the couples (u,Φ(u)). We get an
equation like (Eh), where h is now given by

h = m2
0 − ω2(qΦ(u)− 1)2 .

In particular, h depends on u, and (in the 3d-model) h turns out to be
controlled in C 0,θ-topologies.

The Einstein-scalar field Lichnerowicz equation corresponds to the
Hamiltonian constraint in the constraint equations in the conformal
method setting (Lichnerowicz). The two constraint equations
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(Hamiltonian + Momentum) are written (conformal method setting) as :{
∆gu + h0u = fu2?−1 + a

u2?+1 (EL)
−→
∆gX = n−1

n u2?∇τ − π∇ψ (MC)

where h0, f and a are given (depending on the geometry and physics
data), u is an unknown function, X is an unknown vector field, and
−→
∆g = ∇.L (L the conformal Killing operator). The (EL)-equation is the
Einstein-Lichnerowicz equation. It is highly nonlinear and, in the
CMC-case (where τ = C st) it fully describes the (CE)-system, since then
the two equations are independent (and (MC) is a “basic” Laplace type
equation).

The negative power term in (EL) ⇒ there exists ε0 > 0 s.t. u ≥ ε0 for all
solution of the Hamiltonian constraint. A very basic argument when
a > 0 is as follows : let x0 be a point where u is minimum. Then
∆gu(x0) ≤ 0 and we get from (EL) that

a(x0)

u(x0)2?+1
+ f (x0)u(x0)2?−1 ≤ h0(x0)u(x0)

and when a > 0 this obviously implies that there exists ε0 > 0,
independent of u, such that u ≥ ε0 in M.
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In specific cases f ≡ 1. Then we recover an equation like (Eh), where

h = h0 −
a

u2?+2
.

In particular h depends again on u, and h is here controlled in the
L∞-topology.

The Kirchhoff equation is written as(
a + b

∫
M

|∇u|2dvg
)

∆gu + h0u = u2?−1 , (K )

where a, b > 0 are positive real numbers and h0 ∈ C 1(M,R). Let

K (u) = a + b
∫
M
|∇u|2dvg , and define v = K (u)−

1
2?−2 u. Then

∆gv + hv = v2?−1 ,

and we recover an equation like (Eh), where h = h0

K(u) . Here again h

depends on u, and h is in this case controlled in the C 1-topology.

Moral : There are several models hidden in our model equation (Eh)
when h depends on the solution u. The sole control on the set in which h
varies will have to matter in our approach.
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II.3) A first insight into elliptic stability :

Consider equations like
∆gu = f (x , u) , (E )

where f : M × R→ R is given, and the Laplacian ∆g = −divg∇ is the
Laplace-Beltrami operator.

Goal : define the stability (robustness) of (E ) with respect to f .

Let Sf be the set of solutions of (E ). Let P be a set of perturbations of
f , namely a family of functions f̃ : M × R→ R such that f ∈ P. For the
sake of simplicity we assume Sf̃ ⊂ C 2 for all f̃ ∈ P. Define the pointed
distance between subsets of C 2 by

d ↪→C 2 (X ;Y ) = sup
v∈X

inf
u∈Y
‖v − u‖C 2 ,

and we adopt the conventions that d ↪→C 2 (X ; ∅) = +∞ if X 6= ∅, and

d ↪→C 2 (∅;Y ) = 0 for all Y . Then, d ↪→C 2 (X ;Y ) = 0 iff X ⊂ Y , and d ↪→C 2

satisfies the triangle inequality

d ↪→C 2 (X ;Z ) ≤ d ↪→C 2 (X ;Y ) + d ↪→C 2 (Y ;Z )

for all X ,Y ,Z ⊂ C 2.
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We consider
∆gu = f (x , u) , (E )

and define two notions of stability for (E ).

Definition : (Geometric and Analytic stability)

Equation (E ) is geometrically stable with respect to a set P of
perturbations of f and a norm ‖ · ‖P on P if

∀ε > 0,∃δ > 0 s.t. ∀f̃ ∈ P, ‖f̃ − f ‖P < δ ⇒ d ↪→C 2 (Sf̃ ;Sf ) < ε ;

Equation (E ) is analytically stable with respect to P and ‖ · ‖P if for any
sequence (fα)α in P, converging to f w.r.t. ‖ · ‖P as α→ +∞, and any
sequence (uα)α of solutions of ∆guα = fα(·, uα) in M, there holds that,
up to a subsequence, uα → u in C 2 as α→ +∞, where u solves (E ).

Geometric stability expresses the fact that Sf is stable with respect to
perturbations of f . It corresponds to the continuity in P of the function
f̃ → d ↪→C 2 (Sf̃ ;Sf ). It is easily checked (by contradiction) that :

Analytic stability ⇒ Geometric stability .

The converse is false in general as we can prove below.
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An example of a geometrically stable equation which turns out to
be not analytically stable : Let λ1 ∈ Sp(∆g ) be the first nonzero
eigenvalue of ∆g , λ1 > 0. Let u0 6≡ 0 and f0 6≡ 0 be smooth functions
satisfying that ∆gu0 − λ1u0 = f0, and consider the equation

∆gu − λ1u = f0 . (E ′)

Then u0 solves (E ′). We let P =
{
f̃ (·, u) = f (·) + λu, λ ∈ R, f ∈ C 0,θ

}
,

and define ‖ · ‖P by
‖f̃ ‖P = |λ|+ ‖f ‖C 0,θ .

In other words, we perturb (E ′) by perturbing λ1 and f0 in R× C 0,θ.

Claim 1 : (E ′) is not analytically stable (and not even compact). We see
this by picking ϕ 6≡ 0 in the eigenspace associated to λ1. We let (kα)α be
a sequence of positive real numbers s.t. kα → +∞ as α→ +∞. We
define

uα = u0 + kαϕ .

Obviously, the uα’s all solve (E ′). However ‖uα‖L∞ → +∞ as
α→ +∞, and this contradicts the analytic stability of (E ′).
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Claim 2 : We claim that (E ′) is geometrically stable (w.r.t. perturbations
of λ1 and f0 in R× C 0,θ). We prove this by contradiction. Then there
exists ε0 > 0, a sequence (λα)α ∈ R such that λα → λ1 as α→ +∞,
and a sequence (fα)α ∈ C 0,θ such that fα → f0 in C 0,θ as α→ +∞, with
the property that

d ↪→C 2 (S(λα,fα);S(λ1,f0)) ≥ ε0 , (?)

where S(λ,f ) stands for the set of solutions of ∆gu − λu = f (so that
S(λ1,f0) is precisely the set of solutions of (E ′)). In particular, it follows
from (?) that there exists a sequence (uα)α of C 2-functions such that

∆guα − λαuα = fα (Eα)

for all α, and such that dC 2 (uα;S(λ1,f0)) ≥ ε0

2 for all α.Let Eλ1 be the
eigenspace of ∆g associated to λ1. We know Eλ1 is finite dimensional.
We let ϕ1, . . . , ϕk be a L2-orthonormal basis for Eλ1 , and let vα and ϕα
be given by

vα = uα −
k∑

i=1

λiαϕi , ϕα =
k∑

i=1

λiαϕi .

We choose the λiα’s such that vα ∈ E
⊥L2

λ1
(namely λiα =

∫
uαϕi ). We

claim that
lim

α→+∞
(λα − λ1)ϕα = 0 in C 0,θ. (P)
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We prove (P). Since (E ′) has a solution u0 6≡ 0, integrating (E ′) against

ϕ ∈ Eλ1 there holds that f0 ∈ E
⊥L2

λ1
. Then, by (Eα),∫

fαϕi =

∫
(∆guα − λαuα)ϕi

=

∫
uα (∆gϕi − λαϕi )

= (λ1 − λα)

∫
uαϕi

= (λ1 − λα)λiα ,

and since fα → f0 in C 0,θ, and f0 ∈ E
⊥L2

λ1
, we get that (λ1 − λα)λiα → 0,

and thus that (λα − λ1)ϕα → 0 smoothly. This proves (P).

Now that we have (P), we let λ2 > λ1 be the second eigenvalue for ∆g .
By the variational characterisation of λ2,

λ2 ≤
∫
|∇vα|2∫
|vα − vα|2

(I )

for all α, where vα = uα − ϕα is as above, and vα is the average of vα.
The point here is that vα − vα is L2-orthogonal both to the constants
and to Eλ1 .
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Since functions in Eλ1 has zero average, we get from the definition of vα
that vα = uα. Then, by (Eα), vα = uα = O(1). Still by (Eα) there holds
that

∆gvα − λαvα = fα + (λα − λ1)ϕα (E ′α)

for all α. Then, by (I ) and (E ′α), using that vα = O(1) and that∫
(vα − vα) = 0, we get that∫

v2
α =

∫
vα(vα − vα) + O(1)

=

∫
(vα − vα)2 + O(1)

≤ 1

λ2

∫
|∇vα|2 + O(1)

=
λα
λ2

∫
v2
α +

1

λ2

∫
fαvα +

λα − λ1

λ2

∫
ϕαvα + O(1)

≤ λα
λ2

∫
v2
α + O (‖vα‖L2 ) + O(1)

for all α. Since λα → λ1 and λ1 < λ2, it follows that ‖vα‖L2 = O(1).
Then, by (E ′α), and standard elliptic theory, since (λα − λ1)ϕα → 0
smoothly by (P), we get that the vα’s are bounded in H1 and that, up to
a subsequence, vα → v in C 2, where v solves (E ′).
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Now, at this point, we let w = v − u0, and

wα = u0 + w + ϕα .

There holds that w ∈ Eλ1 since u0 and v both solve (E ′). Since vα → v
in C 2, and vα = uα − ϕα, we get that uα − ϕα → u0 + w in C 2 (note
that v = u0 + w), and thus that

‖uα − wα‖C 2 → 0 (??)

as α→ +∞ (since uα − wα = uα − ϕα − u0 − w). There holds that

∆gwα − λ1wα = f0 (? ? ?)

for all α, since w , ϕα ∈ Eλ1 and u0 solve (E ′). Therefore, by (??) and
(? ? ?),

dC 2 (uα;S(λ1,f0))→ 0

as α→ +∞, and this contradicts the (?) contradiction assumption that
dC 2 (uα;S(λ1,f0)) ≥ ε0

2 . This ends the proof of Claim 2.

By Claims 1 and 2, (E ′) is geometrically stable but not analytically
stable. Q.E.D. �

Elliptic stability - Part II - An introduction to Elliptic Stability



II.4) The subcritical world :

Let (M, g) smooth compact, ∂M = ∅, n ≥ 3, and consider our nonlinear
model equation in the subcritical setting. Namely,

∆gu + hu = up−1 , (Eh)

u ≥ 0, p ∈ (2, 2?). When h is such that ∆g + h is coercive, (Eh)
possesses a nontrivial (minimal) solution. Conversely, if (Eh) has a
nontrivial solution, then ∆g + h is coercive.

We perturb (Eh) with respect to h, e.g. in Hölder spaces C 0,θ, θ ∈ (0, 1),
and say for short that (Eh) is analytically stable if for any sequences
(hα)α in C 0,θ, and (uα)α in C 2, satisfying that ∆guα + hαuα = up−1

α for all α,
uα ≥ 0 in M for all α,
hα → h in C 0,θ as α→ +∞ ,

(Eα)

there holds that, up to a subsequence, uα → u in C 2 for some solution u
of (Eh). This is the analytic stability notion we defined above, for
nonnegative solutions, a set P of f̃ given by f̃ (·, u) = up−1 − h̃(·)u, with
h̃ ∈ C 0,θ, and ‖f̃ ‖P = ‖h̃‖C 0,θ . Then :
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Theorem : (Subcritical stability, Gidas-Spruck, 81)

For any closed manifold (M, g), n ≥ 3, and any h ∈ C 0,θ such that
∆g + h is coercive, (Eh) is analytically stable.

Proof (Baby blow-up theory) : By contradiction, there exist (hα)α and
(uα)α s.t.

∆guα + hαuα = up−1
α (Ehα)

in M for all α, the hα’s converge, and ‖uα‖L∞ → +∞. Let xα be s.t.

uα(xα) = maxM uα. Let µα = ‖uα‖−(p−2)/2
L∞ . Then µα → 0. Define

ũα(x) = µ
2

p−2
α uα

(
expxα(µαx)

)
,

where x ∈ Rn. By construction, ũα(0) = 1 and 0 ≤ ũα ≤ 1 for all α.
Then

∆g̃α ũα + µ2
αh̃αũα = ũp−1

α , (Ẽhα)

where g̃α(x) =
(
exp?xα g

)
(µαx), and h̃α(x) = hα

(
expxα(µαx)

)
. There

holds g̃α → δ in C 2
loc(Rn). Since ‖ũα‖L∞ ≤ 1, standard elliptic theory ⇒

the ũα’s converge in C 2
loc(Rn). Let ũ be their limit. Then ∆ũ = ũp−1. By

construction ũ(0) = 1. And we get a contradiction with the Liouville
theorem of Gidas and Spruck : the equation ∆u = up−1 doesn’t have
nonnegative nontrivial solutions in Rn when p < 2?. Q.E.D. �
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II.5) More precise definitions are needed in the critical world :

Let (M, g) closed, n ≥ 3. For k ∈ N, and θ ∈ [0, 1], we adopt the
convention that C k,0 = C k . Given h ∈ C k,θ, we consider our model
equation in the critical case

∆gu + hu = u2?−1 , (Eh)

u ≥ 0, and we plan to perturb (Eh) with respect to h in C k,θ (as in the
subcritical case).

We adopt here the more refined following terminology by splitting
analytic stability into three notions of analytic stability involving energy.
We define :

- C k,θ-analytic Λ-stability,
- C k,θ-analytic stability,
- C k,θ-bounded stability,

by playing with the energy E (u) =
∫
M
|u|2?dvg which, for solutions u of

equations like (Eh), turns out to be equivalent to ‖u‖2
H1 .

As in the subcritical case, the existence of a nontrivial solution u ≥ 0 to
(Eh) implies that ∆g + h is coercive (a natural assumption we will face
several time in the forthcoming slides).
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Definition : (Analytic stability in the critical case)

Let Λ > 0. Equation (Eh) is C k,θ-analytically Λ-stable if for any
sequence (hα)α in C k,θ such that hα → h in C k,θ as α→ +∞, and any
sequence (uα)α, uα ≥ 0, such that

∆guα + hαuα = u2?−1
α (Ehα)

in M for all α, satisfying that
∫
M
u2?

α dvg ≤ Λ for all α, there holds that,
up to a subsequence, uα → u in C 2 as α→ +∞ for some solution u of
(Eh). Equation (Eh) is C k,θ-analytically stable if it is C k,θ-analytically
Λ-stable for all Λ > 0. Equation (Eh) is C k,θ-bounded and stable if it is
C k,θ-analytically ∞-stable.

This definition has a natural companion dealing with compactness.

Definition : (Compactness)

Let Λ > 0. Equation (Eh) is Λ-compact if any sequence (uα)α, uα ≥ 0,
of solutions of (Eh) satisfying that

∫
M
u2?

α dvg ≤ Λ for all α, has a
subsequence which converges in C 2 to a solution of (Eh). Equation (Eh)
is compact if it is Λ-compact for all Λ > 0. Equation (Eh) is bounded
and compact if it is ∞-compact.
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Rk1 : The analytic stability notions are ordered (bounded stability ⇒
analytic stability ⇒ analytic Λ-stability for all Λ > 0) and the more we
increase k , the less we actually demand (C k′,θ-stability ⇒ C k,θ-stability
if k ′ ≤ k).

Rk2 : We have that stability ⇒ compactness (C k,θ-bounded stability ⇒
bounded compactness, C k,θ-analytic stability ⇒ compactness,
C k,θ-analytic Λ-stability ⇒ Λ-compactness for all Λ > 0, for all k and θ).

The difference between stability and compactness turns out be precisely
the notion of geometric stability that we discussed in II.3, and we have
that Analytic stability = Geometric stability + Compactness.

Proposition : (Analyt.Stab. = Geom.Stab. + Cptness)

Let k ∈ N, θ ∈ [0, 1], and Λ > 0. Equation (Eh) is C k,θ-analytically
Λ-stable if and only if

∀ε > 0,∃δ > 0 s.t. ∀h̃ ∈ C k,θ, ‖h̃ − h‖C k,θ ⇒ d ↪→C 2

(
SΛ
h̃

;SΛ
h

)
< ε (GS)

and (Eh) is Λ-compact, where SΛ
h̃

is the set of the solutions u of (Eh̃)
which satisfy that E (u) ≤ Λ.
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Proof of the Proposition : The implication “Analyt.Stab. ⇒ Geom.Stab.
+ Cptness” is obvious. Conversely, we assume (GS) and that (Eh) is
Λ-compact. Let (hα)α be a sequence in C k,θ such that hα → h in C k,θ.
Let also (uα)α be such that the uα’s solve (Ehα) and satisfy that
E (uα) ≤ Λ for all α. By (GS) there exists a sequence (vα)α in SΛ

h such
that ‖vα − uα‖C 2 → 0 as α→ +∞. By the Λ-compactness of (Eh), since
the vα’s are all in SΛ

h , we also have that there exists v ∈ SΛ
h such that, up

to a subsequence, vα → v in C 2 as α→ +∞. Then we clearly get that,
up to a subsequence, uα → v in C 2 as α→ +∞, and this proves the
C k,θ-analytic Λ-stability of (Eh). Q.E.D. �

Anticipating on what we are going to discuss in Part IV, the following
proposition holds true.

Proposition : (Compactness 6⇒ Analytic Stability)

There are equations like (Eh) which are compact but unstable.

There are sophisticated examples of such a fact, but also very easy
examples like the Yamabe equation in the projective space Pn(R) when
n ≥ 6. As proved in II.4, the situation described in the proposition does
not occur in the subcritical case of (Eh).
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Thank you for your attention !
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