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NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.
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(M, g) smooth compact, M = () (closed manifold), n > 3.

Model equation
Agu+ hu = uPt (Ep)

Varying h's
Here : u>0, Ay = —div,V, h € C% (typically), p € (2,2*], where
2* = % is the critical Sobolev exponent. H' Sobolev space of functions

in L2 with one derivative in L2. Then H! C LP for all p < 2%, and

H! C LP is compact when p < 2*,
but not when p = 2*.

e p
Subcritical “world” % Critical “world”
p<2* p=2*

Question : How much is (Ejp) robust with respect to h?
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- The Yamabe equation

- The stationary Klein-Gordon-Maxwell-Proca system
- The Einstein-Lichnerowicz equation

- The Kirchhoff equation

The Yamabe equation is obviously of the (Ep)-type. It is written as

n—2 21

A _— =
gu+4(n_1)5gu u

We get an equation like (Ep) , where

n—2

4(n— l)Sg

is given by the geometry of the manifold (and p = 2* is critical). As we
saw, the LHS in (YY) is the conformal Laplacian (and it enjoys conformal
invariance).
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The stationary Klein-Gordon-Maxwell-Proca system in reduced form is
also of the (Ep)-type. The (KGMP,)-system is written as
A 2. _ 2% -1 2(qy — 1)2
gu—i—mos u2 . +w (qzv )u (KGMP,)
Agv—l—(ml—l—qu)v:qu.

We can always solve the equation
Dgd(u) + (m? + ¢*u?)d(u) = qu?
and we get a map ¢ : H! — H!. Then the (KGMP,)-system reduces to
the first equation
Dgu+miu=u¥ " 402 (qb(u) —1)°u .
The solutions of the system are the couples (u, ®(u)). We get an
equation like (Ep), where h is now given by
h=mj —w?(qd(u) —1)*.
In particular, h depends on u, and (in the 3d-model) h turns out to be
controlled in C%?-topologies.

The Einstein-scalar field Lichnerowicz equation corresponds to the
Hamiltonian constraint in the constraint equations in the conformal
method setting (Lichnerowicz). The two constraint equations
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(Hamiltonian + Momentum) are written (conformal method setting) as :

Bguthou= i+ 2 (EL)
KX =222V —avVy  (MQ)

where hg, f and a are given (depending on the geometry and physics
data), v is an unknown function, X is an unknown vector field, and

Az = V.L (L the conformal Killing operator). The (EL)-equation is the
Einstein-Lichnerowicz equation. It is highly nonlinear and, in the
CMC-case (where 7 = C**) it fully describes the (CE)-system, since then
the two equations are independent (and (MC) is a “basic” Laplace type
equation).

The negative power term in (EL) = there exists €g > 0 s.t. u > & for all
solution of the Hamiltonian constraint. A very basic argument when

a > 0 is as follows : let xy be a point where v is minimum. Then
Agu(xp) <0 and we get from (EL) that

a(xo)
u(x0)2 1
and when a > 0 this obviously implies that there exists g > 0,
independent of u, such that u > &g in M.

+ f(x0)u(x0)? ~ < ho(x0)u(xo)
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In specific cases f = 1. Then we recover an equation like (Ep), where

a

h=ho— —— .
u2+2

In particular h depends again on u, and h is here controlled in the
L°°-topology.

The Kirchhoff equation is written as
(a + b/ |Vu|2dvg) Dgu+ hou= 0?71, (K)
M

where a, b > 0 are positive real numbers and hg € C}(M,R). Let
K(u)=a+ b [,,|Vu|?dv,, and define v = K(u)~72u. Then

Agv+ hv = v 1 ,

and we recover an equation like (E;), where h = % . Here again h

depends on v, and h is in this case controlled in the C!-topology.
Moral : There are several models hidden in our model equation (Ep)

when h depends on the solution u. The sole control on the set in which h
varies will have to matter in our approach.
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[1.3) A first insight into elliptic stability :

Consider equations like
Agu="f(x,u), (E)

where f : M x R — R is given, and the Laplacian Ay = —div,V is the
Laplace-Beltrami operator.

Goal : define the stability (robustness) of (E) with respect to f .

Let Sr be the set of solutions of (E). Let P be a set of perturbations of
f, namely a family of functions f : M x R — R such that f € P. For the
sake of simplicity we assume S; C C? for all f € P. Define the pointed
distance between subsets of C? by

dez(X;Y) =sup inf ||[v—u|c
vex ueYy
and we adopt the conventions that dz7 (X;0) = +oo if X # (), and

Z(0;Y)=0forall Y. Then, dZ(X;Y)=0iff X C Y, and d?
satisfies the triangle inequality

de (X;Z) < da (X, Y)+da (Y 2)
forall X,Y,Z c C2.
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We consider
Agu=f(x,u), (E)

and define two notions of stability for (E).

Definition : (Geometric and Analytic stability)

Equation (E) is geometrically stable with respect to a set P of
perturbations of  and a norm || - ||» on P if

Ve>0,30>0st. VF€P,||f —fllp<d = dzZ(S;:SF) <e;

Equation (E) is analytically stable with respect to P and || - || if for any
sequence (fy)q in P, converging to f w.r.t. || - [[» as & — 400, and any
sequence (Ug)q of solutions of Agu, = fy(+, ty) in M, there holds that,
up to a subsequence, u, — uin C? as a — +o0, where u solves (E).

Geometric stability expresses the fact that Sr is stable with respect to
perturbations of f. It corresponds to the continuity in P of the function
f — dz3 (Sz; S¢). It is easily checked (by contradiction) that :

Analytic stability = Geometric stability .

The converse is false in general as we can prove below.
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An example of a geometrically stable equation which turns out to
be not analytically stable : Let \; € Sp(A,) be the first nonzero
eigenvalue of Ag, Ay > 0. Let up # 0 and fy # 0 be smooth functions
satisfying that Agup — A\1up = fo, and consider the equation

Dgu—Mu=T. (E")

Then uo solves (E'). We let P = {?(-, u)=f() F AL A ER,f € Coﬂ},

and define || - ||» by 5
[fllp = (Al + Il coo -

In other words, we perturb (E’) by perturbing A; and fy in R x C%?.

Claim 1 : (£’) is not analytically stable (and not even compact). We see
this by picking ¢ Z 0 in the eigenspace associated to A;. We let (k,)o be
a sequence of positive real numbers s.t. k, — 400 as a = +00. We
define

Uy = Ug + ko -

Obviously, the u,'s all solve (E"). However ||ug||ic — 400 as
a — 400, and this contradicts the analytic stability of (E').
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Claim 2 : We claim that (E’) is geometrically stable (w.r.t. perturbations
of A1 and fy in R x C%%). We prove this by contradiction. Then there
exists €g > 0, a sequence (A )a € R such that A\, — A\ as a@ — 400,
and a sequence (f,)o € C%? such that £, — fy in C% as a — 400, with
the property that

ez (S(aa.fa)i Sah)) = €0 (%)
where S, ¢y stands for the set of solutions of Agu — Au = f (so that
S(.%) is precisely the set of solutions of (E”)). In particular, it follows
from (x) that there exists a sequence (1), of C>-functions such that

Dty — Aol = £, (Ea)
for all a, and such that dc2(ua; S(a,,6)) > F for all a.let Ey, be the

eigenspace of A, associated to A\;. We know E), is finite dimensional.
We let ¢1,. ..,k be a L2-orthonormal basis for Ey,, and let v, and ¢,

be given by
k k
Vo =ta— > Api, Pa = Moi.
i=1 i=1

We choose the A’ 's such that v, € E;'ILZ (namely X, = [ ua ;). We
claim that
lim (Ao — A1)@a =0 in C%7. (P)

a——+o00

Elliptic stability - Part Il - An introduction to Elliptic Stability



We prove (P). Since (E’) has a solution ug # 0, integrating (E’) against
¢ € E, there holds that fy € E; . Then, by (Ey),

/fa@i:/(Agua_)\aua)wi

= /Ua (Ag%’ — Aai)

= ()\1 - )\a)/ua@i

= (A1 =) A,
and since f, — fp in C%? and f, € E)\Ll‘z, we get that (A1 — A\q) A, — 0,
and thus that (Aq — A1)pa — 0 smoothly. This proves (P).

Now that we have (P), we let A\, > \; be the second eigenvalue for A,.
By the variational characterisation of A,

[1Vval?
A < = I
2 f|Va7Va|2 ( )

for all «, where v, = u, — 4 is as above, and V,, is the average of v,.

The point here is that v, — V., is L?-orthogonal both to the constants
and to Ej,.
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Since functions in Ey, has zero average, we get from the definition of v,
that Vo, = Uq,. Then, by (E,), Vo = Tq = O(1). Still by (E,) there holds
that

Dgva — AaVa = fo + (Ao — A1) @a (EL)
for all . Then, by (/) and (E.), using that v, = O(1) and that
J(Va —Va) =0, we get that

/v _/va Vo — Vo) + O(1)

~ [t =wa+ o)
Aiz/|wa|2+0(1)

Mo [ o 1 Ao — A1
e f s, 2 [ o)
Aa

= [ v+ ollale) + 0w

for all a. Since A\, — A1 and A1 < Ay, it follows that ||v, |2 = O(1).
Then, by (E.), and standard elliptic theory, since (Aq — A1)pa — 0
smoothly by (P), we get that the v, 's are bounded in H! and that, up to
a subsequence, v, — v in C2, where v solves (E’).

IA

IN
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Now, at this point, we let w = v — ug, and
Wo = Up+ W+ @ .

There holds that w € Ej, since ug and v both solve (E’). Since v, — v
in C2, and v, = U, — Vo, We get that uy, — o — Ug + w in C? (note
that v = up + w), and thus that

”ua—WaHC? —0 (**)
as a — +00 (since Uy — Wy = Uy — Po — Ug — w). There holds that
Dgwo — Aiw, = 1o (% * %)

for all «, since w, o € Ey, and ug solve (E’). Therefore, by (>x) and
(* % %),
dcz(ua; 5()\17,60)) —0

as a — +00, and this contradicts the (x) contradiction assumption that
dc2(Ua; Sa,5)) = 3. This ends the proof of Claim 2.

By Claims 1 and 2, (E’) is geometrically stable but not analytically
stable. Q.E.D. [ |
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[1.4) The subcritical world :

Let (M, g) smooth compact, 9M = @, n > 3, and consider our nonlinear
model equation in the subcritical setting. Namely,

Agu+ hu= uP™t (En)

u>0, pe(2,2¢). When his such that A, + h is coercive, (Ep)
possesses a nontrivial (minimal) solution. Conversely, if (E,) has a
nontrivial solution, then Az + h is coercive.

We perturb (E,) with respect to h, e.g. in Holder spaces C%%, 6 € (0,1),
and say for short that (Ejp) is analytically stable if for any sequences
(ha)a in C%? and (uy)q in C?, satisfying that

Agug + hquy = ug’l for all a,
Uq > 0in M for all a, (Ea)
ha — hin C%? as o — 400 ,

there holds that, up to a subsequence, u, — v in C? for some solution u
of (Ep). This is the analytic stability notion we defined above, for
nonnegative solutions, a set P of f given by f(-, u) = uP~ — h(-)u, with
he €% and ||f||p = ||hl|coe. Then :
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Theorem : (Subcritical stability, Gidas-Spruck, 81)

For any closed manifold (M, g), n > 3, and any h € C%? such that
Ag + his coercive, (Ej) is analytically stable.

Proof (Baby blow-up theory) : By contradiction, there exist (h,), and
(Uq)a s:t.

DAgug + hotiy = P71 (Eh.)
in M for all o, the h,'s converge, and ||uy |1~ — +o00. Let x, be s.t.
Ua(Xq) = maxpy Uy Let pg = Hua|\zo(op_2)/2. Then p1q — 0. Define

2
o (x) = &7 o (exp,, (1aX))

where x € R". By construction, @,(0) =1 and 0 < @i, <1 for all a.
Then

Ag, b + Niﬁaz’a = ‘N/Z_l ) (Eha)
where g,(x) = (expf. g) (ax), and ha(x) = ha (exp,, (kaX)). There
holds g, — & in C2_(R"). Since ||@ia|[= < 1, standard elliptic theory =
the @i,'s converge in C2_(R"). Let @ be their limit. Then Al = &P~!. By
construction #(0) = 1. And we get a contradiction with the Liouville
theorem of Gidas and Spruck : the equation Au = uP~! doesn’t have
nonnegative nontrivial solutions in R” when p < 2*. Q.E.D. |
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[1.5) More precise definitions are needed in the critical world :

Let (M, g) closed, n > 3. For k € N, and 6 € [0, 1], we adopt the
convention that C¥% = Ck. Given h € C*?, we consider our model
equation in the critical case

Agu+hu=u?"1, (En)

u >0, and we plan to perturb (Ep) with respect to hin CX? (as in the
subcritical case).

We adopt here the more refined following terminology by splitting
analytic stability into three notions of analytic stability involving energy.
We define :

- CkP-analytic A-stability,

- Ck9-analytic stability,

- Ck9-bounded stability,
by playing with the energy E(u) = [, |u? dv, which, for solutions u of
equations like (Ep), turns out to be equivalent to ||u||2,.
As in the subcritical case, the existence of a nontrivial solution u > 0 to

(En) implies that A, + h is coercive (a natural assumption we will face
several time in the forthcoming slides).
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Definition : (Analytic stability in the critical case)

Let A > 0. Equation (Ep,) is C*%-analytically A-stable if for any
sequence (hy)a in C5% such that h, — hin C%? as a — +o0, and any
sequence (Uqg)a, Us > 0, such that

Agug + hous = ui*_l (Eh,,)

in M for all o, satisfying that fM uf; dvy < A for all «, there holds that,
up to a subsequence, u, — u in C? as o — +oo for some solution u of
(Ep). Equation (Ep) is C*%-analytically stable if it is C*-analytically
A-stable for all A > 0. Equation (E,) is C*?-bounded and stable if it is
Ck9-analytically oo-stable.

This definition has a natural companion dealing with compactness.

Definition : (Compactness)

Let A > 0. Equation (Ej) is A-compact if any sequence (Uy)a, Ua > 0,
of solutions of (Ej) satisfying that [, u? dvg < A for all @, has a
subsequence which converges in C? to a solution of (E,). Equation (Ej)
is compact if it is A-compact for all A > 0. Equation (E;) is bounded
and compact if it is co-compact.
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Rk1 : The analytic stability notions are ordered (bounded stability =
analytic stability = analytic A-stability for all A > 0) and the more we
increase k, the less we actually demand (CK?-stability = Ckf-stability
if k" <k).

Rk2 : We have that stability = compactness (C*-bounded stability =
bounded compactness, C*?-analytic stability = compactness,
Ck9-analytic A-stability = A-compactness for all A > 0, for all k and 6).

The difference between stability and compactness turns out be precisely
the notion of geometric stability that we discussed in 11.3, and we have
that Analytic stability = Geometric stability + Compactness.

Proposition : (Analyt.Stab. = Geom.Stab. + Cptness)

Let k €N, 6 € [0,1], and A > 0. Equation (E,) is C*%-analytically
A-stable if and only if

Ve>0,30 > 0st. Yhe C* |h—hllco = dgz (S)Sh) <e (GS)

and (Ep) is A-compact, where S2 is the set of the solutions u of (Ej)
which satisfy that E(u) < A.
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Proof of the Proposition : The implication “Analyt.Stab. = Geom.Stab.
+ Cptness” is obvious. Conversely, we assume (GS) and that (Ep) is
A-compact. Let (hy)a be a sequence in CX9 such that h, — hin CK9.
Let also (uy)a be such that the u,'s solve (Ep, ) and satisfy that

E(ua) < A for all a. By (GS) there exists a sequence (v, )q in S such
that ||V — tallc2 — 0 as @ — +00. By the A-compactness of (Ep), since
the v,'s are all in S}, we also have that there exists v € S} such that, up
to a subsequence, v, — v in C? as @ — +00. Then we clearly get that,
up to a subsequence, u, — v in C? as & — +00, and this proves the
Ck9-analytic A-stability of (E;). Q.E.D. n

Anticipating on what we are going to discuss in Part IV, the following
proposition holds true.

Proposition : (Compactness # Analytic Stability)

There are equations like (E,) which are compact but unstable.

There are sophisticated examples of such a fact, but also very easy
examples like the Yamabe equation in the projective space P"(R) when
n > 6. As proved in 1l.4, the situation described in the proposition does
not occur in the subcritical case of (Ep).
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Thank you for your attention!
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