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NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.
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PART III. A PRIORI BLOW-UP THEORIES IN THE CRITICAL CASE
OF THE STATIONARY SCHRÖDINGER EQUATION.

III.1) Preliminary material :

The Sobolev inequality Ḣ1 ⊂ L2? in Rn is written as ‖u‖L2? ≤ Kn‖∇u‖L2 .
The precise value of the sharp constant Kn was computed by Aubin and

Talenti and it was found that

Kn =

√
4

n(n − 2)ω
2/n
n

,

where ωn is the volume of the unit n-sphere. The extremal functions are
known. They form a (n + 1)-parameter family given by

uΛ,x0 (x) =

 Λ

Λ2 + |x−x0|2
n(n−2)


n−2

2

for Λ > 0 and x0 ∈ Rn. By an important result of Caffarelli-Gidas-Spruck
(see also Obata), these extremals are the sole nonnegative solutions of
the critical equation ∆u = u2?−1 in Rn (which has nontrivial solutions by
opposition to its subcritical version ∆u = up−1, p < 2?).
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III.2) The general question :

Let (M, g) closed, n ≥ 3. Let (hα)α be a converging sequence of
functions (in a space to be defined according to the theory we deal with).
We consider the following family of critical model equations

∆gu + hαu = u2?−1 , (Eα)

and the goal we want to achieve in this third part is the following.

Goal : describe the asymptotic behaviour of sequences (uα)α of solutions
of the (Eα)’s in reasonnable spaces.

There will be three “reasonnable spaces” : L2? , H1, and C 0 (or C k ,
k ≥ 1) leading to the

- Lp-theory (L2? -description of the asymptotics),
- H1-theory (H1-description of the asymptotics),
- C 0-theory (pointiwse estimates).

The two first theories are concerned with more general objects
(Sequences in Lp, Palais-Smale sequences in H1) than sequences of
solutions (there is room in L2? and in H1 to add small H1-terms leading
to the notion of Palais-Smale sequences).
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Solutions of (Eα) can be seen as (nonnegative) critical points of the free
functionals Iα : H1 → R given by

Iα(u) =
1

2

∫
M

(
|∇u|2 + hαu

2
)
dvg −

1

2?

∫
M

|u|2
?

dvg .

Definition :

A sequence (uα)α in H1 is a Palais-Smale sequence(for short PS
sequence) for the sequence (Eα)α of equations if :

(i) ((Iα(uα))α is bounded in R ,
(ii) DIα(uα)→ 0 in (H1)? as α→ +∞.

The two equations Iα(uα) = O(1), DIα(uα).(uα) = o (‖uα‖H1 ) imply
that Palais-Smale sequences are bounded in H1 (Brézis-Nirenberg).
Conversely, a sequence of solutions of (Eα), in the sense that each uα
solves (Eα), which is bounded in H1, is a Palais-Smale sequence. The
Palais-Smale sequence notion extends the notion of H1-bounded
sequences of solutions by relaxing the condition DIα(uα) = 0 into
DIα(uα)→ 0.
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III.3) The Lp-theory :

The Lp-theory describes the asymptotical behaviour (the blow-up) in L2?

in terms of Dirac masses. The theory goes back to P.L.Lions and can be
seen as an easy consequence of his concentration-compactness principle.

Theorem : (Concentration-Compactness, P.L.Lions, 84)

Let (uα)α be a bounded sequence in H1 such that uα ⇀ u∞ in H1, and
such that the measures µα = |∇uα|2dvg ⇀ µ and να = |uα|2

?

dvg ⇀ ν
converge weakly in the sense of measures. Then there exist an at most
countable set J, distinct points xj ∈ M for j ∈ J, and positive real
numbers µj , νj > 0 for j ∈ J such that

ν = |u∞|2
?

dvg +
∑
j∈J

νjδxj ,

µ ≥ |∇u∞|2dvg +
∑
j∈J

µjδxj ,

and such that 1
K 2

n
ν

2/2?

j ≤ µj , where Kn is the sharp constant in the

Sobolev inequality. In particular,
∑

j∈J ν
2/2?

j < +∞.
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We assume here that the hα’s converge in L∞. Let h∞ be the limit of the
hα’s so that hα → h∞ in L∞ as α→ +∞. Then the (Eα)’s have, as a
formal limit equation, our model equation

∆gu + h∞u = u2?−1 . (E∞)

The Lp-theory theorem is stated as follows.

Theorem : (Lp-theory, P.L.Lions, 84)

Let (hα)α be a sequence in L∞ such that hα → h∞ as α→ +∞, and
(uα)α a PS sequence of nonnegative functions for (Eα). There exists
u∞ ∈ H1, a nonnegative solution of (E∞), N ∈ N, x1, . . . , xN ∈ M, and
λ1, . . . , λN > 0 such that, up to a subsequence,

u2?

α dvg ⇀ u2?

∞dvg +
N∑
i=1

λiδxi (LpE )

weakly in the sense of measures. Moreover, uα ⇀ u∞ in H1.

The xi ’s are referred to as the geometric blow-up points of the sequence
(uα)α. As a direct consequence of the theorem, since

∫
u2?

α →
∫
u2?

∞
outside the xi ’s, we get that (Brézis-Lieb) uα → u∞ in H1

loc(M\S), where
S = {xi , i = 1, . . . ,N}.
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Proof of the theorem : Since (uα)α is bounded in H1 we can assume
that, up to a subsequence, uα ⇀ u∞ in H1, uα → u∞ in L2, and
uα → u∞ a.e. It is easily seen (Yamabe) that u∞ solves (E∞). Let
µα = |∇uα|2dvg and να = |uα|2

?

dvg . By the weak compactness of
measures, µα ⇀ µ and να ⇀ ν as α→ +∞. Let ϕ ∈ C∞. By the PS
property, DIα(uα).(ϕuα) = o(1), and thus∫

(∇uα∇(ϕuα)) +

∫
hαϕu

2
α =

∫
|uα|2

?

ϕ+ o(1) . (1)

We compute∫
(∇uα∇(ϕuα)) = µ(ϕ) +

∫
u∞(∆gu∞)ϕ−

∫
|∇u∞|2ϕ+ o(1) ,

and
∫
hαϕu

2
α =

∫
h∞ϕu

2
∞ + o(1). There holds

∫
|uα|2

?

ϕ = ν(ϕ) + o(1).

By CCP µ ≥ |∇u∞|2dvg +
∑

j∈J µjδxj and ν = |u∞|2
?

dvg +
∑

j∈J νjδxj .
Since u∞ solve (E∞), we get from (1) that∑

j∈J

µjϕ(xj) ≤
∑
j∈J

νjϕ(xj) (2)

for all ϕ ∈ C∞. The series
∑
µj and

∑
νj converge and thus µj ≤ νj for

all j . By CCP, 1
K 2

n
ν

2/2?

j ≤ µj . Thus ν
1− 2

2?

j ≥ K−2
n and J has to be finite.

This proves (LpE ). Q.E.D. �
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III.4) The H1-theory :

The question now is to understand what kind of objects are hidden behind
the Dirac masses of the Lp-theory, namely to understand the α-dynamics
of the formation of Dirac masses in the Lp-theory. The key notion there is
that of a bubble (or sphere singularity). The definition is as follows.

Definition : (Bubble)

A bubble is a sequence (Bα)α of functions, Bα : M → R, given by

Bα(x) =

 µα

µ2
α +

dg (xα,x)2

n(n−2)


n−2

2

for all x ∈ M and all α, where dg is the Riemannian distance, (xα)α is a
converging sequence of points in M, and (µα)α, µα → 0, is a sequence of
positive real numbers converging to zero as α→ +∞.

The xα’s are the centers of the bubble. The µα’s are the weights of the
bubble.
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Up to changing the Riemannian distance dg by the Euclidean distance in
the definition of a bubble, we recognize in this definition the extremal
functions uΛ,x0 for the sharp Euclidean Sobolev inequality. These, as
already mentioned, are also (Caffarelli-Gidas-Spruck) the sole nonnegative
solutions of ∆u = u2?−1 in Rn (which is the limit equation we get by
blowing-up the (Eα)’s as in the Gidas-Spruck “baby” blow-up argument).

Let x0 = limα xα. Then Bα → 0 in L∞loc(M\{x0}). We can compute that,
actually, Bα → 0 in L∞ in M\Bxα(rα) when rα �

√
µα. On the other

hand, since Bα(xα) = 1

µ
(n−2)/2
α

, we get that Bα(xα)→ +∞ as α→ +∞.

There holds B2?

α dvg ⇀
1
K n

n
δx0 , where Kn is the sharp constant in the

Euclidean Sobolev inequality. Bubbles are perfect candidates to be hidden
behind the Dirac masses of the Lp-theory.
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The following theorem is stated in Struwe’s form. Related references are
by Sacks-Uhlenbeck, Wente, Brézis-Coron, Bahri-Coron.

Theorem : (H1-theory, M. Struwe, 84)

Let (hα)α be a sequence in L∞ such that hα → h∞ as α→ +∞, and
(uα)α be a PS sequence of nonnegative functions for (Eα). There exist
u∞ ∈ H1, a nonnegative solution of (E∞), k ∈ N, and k bubbles (B i

α)α,
i = 1, . . . , k , such that, up to a subsequence,

uα = u∞ +
k∑

i=1

B i
α + Rα , (H1E )

where (Rα)α is a sequence in H1 such that Rα → 0 in H1 as α→ +∞.
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The bubbles in (H1E ) do not interact one with another (at the H1-level)
and (H1E ) comes with an important equation (that we refer to as the
structure equation) which implies that the H1-scalar product between
two bubbles (B i

α)α and (B j
α)α in (H1E ) tends to zero as α→ +∞. The

structure equation is written as

µi,α

µj,α
+
µj,α

µi,α
+

dg (xi,α, xj,α)2

µi,αµj,α
→ +∞ (SE )

as α→ +∞, for all i 6= j , where the xi,α’s and µi,α’s are the centers and
weights of the bubbles (B i

α)α. In particular, the ‖ · ‖2
H1 and ‖ · ‖2?

L2? norms
of the uα’s respect the decomposition (H1E ).

We can check (H1E )⇒ (LpE ), where N in (LpE ) is the number of
distinct limits we get by the convergence of the centers xi,α of the
bubbles (there may be bubbles which accumulate one on another, and
thus that k > N), where the xi ’s, i = 1, . . . ,N, in (LpE ) are the limits of
the xj,α’s, j = 1, . . . , k , where the λi ’s in (LpE ) are given by λi = niK

−n
n

for all i = 1, . . . ,N, and where ni is the number of xj,α’s, j = 1, . . . , k ,

which converge to xi so that
∑N

i=1 ni = k (grape decomposition).
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Brief sketch of proof of the theorem : There are two preliminary lemmas
(easy), one inductive lemma (difficult), and one concluding lemma
(easy). The two preliminary lemmas are as follows :

(L1) (Brézis-Nirenberg, Yamabe) PS sequences (uα)α are bounded in H1

and, up to a subsequence, they converge weakly in H1, strongly in L2,
and a.e. to some u∞ which solves (E∞).

and

(L2) If (uα)α is a PS sequence for (Eα), and uα ⇀ u∞ in H1, then
vα = uα − u∞ is a PS sequence for the free functional

I0(u) =
1

2

∫
|∇u|2 − 1

2?

∫
|u|2

?

,

there holds that vα ⇀ 0 in H1, and

I0(vα) = Iα(uα)− I∞(u∞) + o(1)

for all α, where I∞ = lim Iα.

Roughly speaking (L2) states that we can get rid of the limit profile u∞
and the potentials hα which, both, can be set to zero.
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The key inductive lemma is as follows.

(Lind) Let (vα)α be a PS sequence of nonnegative functions for I0 such
that vα ⇀ 0 in H1 but vα 6→ 0 in H1 as α→ +∞. There exist a bubble
(Bα)α, and a PS sequence (wα)α of nonnegative functions for I0 such
that, up to a subsequence,

wα = vα − Bα + Rα

for all α, where Rα → 0 in H1 as α→ +∞, and

I0(wα) = I0(vα)− 1

nK n
n

+ o(1)

for all α (the constant 1
nK n

n
being precisely, up to o(1), the free energy

I0(Bα) of the bubble).

At last the concluding lemma is as follows.

(L3) (Aubin, Brézis-Nirenberg) Let (vα)α be a PS sequence of
nonnegative functions for I0 such that vα ⇀ 0 in H1 and I0(vα)→ c as
α→ +∞. If c < 1

nK n
n

, then vα → 0 in H1 as α→ +∞.

With these lemmas (L1), (L2), (L3), and (Lind) we can prove the
theorem.
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Brief sketch of proof of the theorem (continued) : Let (uα)α be a PS
sequence of nonnegative functions for (Eα). By (L1) and (L2), the uα’s
are bounded in H1, uα ⇀ u∞ in H1, uα → u∞ in L2, uα → u∞ a.e.,
where u∞ ≥ 0 solves (E∞). Moreover, vα = uα − u∞ is a PS sequence
for I0 such that vα ⇀ 0 in H1 and

I0(vα) = Iα(uα)− I∞(u∞) + o(1) .

A nice (tricky though easy) argument shows that we can assume that
vα ≥ 0 for all α (up to adding a Rα → 0 in H1 to the vα’s). We let
w0
α = vα. In case w0

α → 0 in H1, we have the theorem with k = 0. If not
the case w0

α 6→ 0 in H1 and by (Lind) there exist a bubble (B1
α)α, and a

PS sequence (w1
α)α of nonnegative functions for I0 such that, up to a

subsequence,

w1
α = w0

α − B1
α + Rα , and

I0(w1
α) = I0(w0

α)− 1

nK n
n

+ o(1)

for all α, where Rα → 0 in H1. Clearly, w1
α ⇀ 0 in H1. Here again, either

w1
α → 0 in H1, and we get the theorem with k = 1, or w1

α 6→ 0 in H1 and
we can apply again (Lind). We go on with this procedure.
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At the k th step we get k bubbles (B i
α)α, and a PS sequence (wk

α)α of
nonnegative functions for I0 such that, up to a subsequence,

wk
α = w0

α −
k∑

i=1

B i
α + Rα ,

I0(wk
α) = I0(w0

α)− k

nK n
n

+ o(1)

for all α, where Rα → 0 in H1. By (L3), wk
α → 0 in H1 if I0(wk

α)→ c
with c < 1

nK n
n

. Obviously this implies that the process has to step at some

stage since, at each step, we substract a fix amount of energy (1/nK n
n )

to the initial energy Iα(uα)− I∞(u∞). When the process stops,

w0
α −

k∑
i=1

B i
α = Rα

and this is precisely (H1E ) since w0
α = uα − u∞. The theorem is proved.

Q.E.D. �
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III.5) The C 0-theory :

At this stage we would like to get sharper estimates involving pointwise
asymptotics. For this we need to drop dealing with PS sequences (since
PS sequences are stable by the addition of Rα’s when Rα → 0 in H1).
The C 0-theory has to do with H1-bounded sequences of solutions of
(Eα). Namely with sequences (uα)α of nonnegative functions such that

∆guα + hαuα = u2?−1
α (Eα)

and ‖uα‖H1 = O(1) for all α. Two remarks are in order.

Rk1 : (In general, Rα 6→ 0 in L∞). The naive idea stating that the
C 0-theory is just the H1-theory with the rest (Rα)α converging to zero in
L∞ is false. The solutions uα of the Yamabe equation on the sphere,
which can be made to blow up, have an H1-decomposition with one
bubble like uα = Bα + Rα, Rα → 0 in H1, but (as we can compute)
Rα 6→ 0 in L∞ when n ≥ 6, while we even have that ‖Rα‖L∞ → +∞
when n ≥ 7. In other words, we will have to come with something which
is slightly more subtle than the sole convergence of the rest to zero in L∞.

The second remark is even more important.
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Rk2 : (Bubbles in the H1-decomposition may interact at the C 0-level).
As already mentionned, because of the structure equation (SE ), bubbles
do not interact one with another at the H1-level. The point here is that a
bubble (Bα)α, with centers and weights xα and µα, live in the H1-world
essentially in the balls Bxα(rα) for rα ≈ µα. In particular, it H1-dies
outside such balls :

lim
R→+∞

lim
α→+∞

∫
M\Bxα (Rµα)

|∇Bα|2dvg = 0 .

On the other hand, the Bα’s live up to
√
µα in the C 0-world : for any

R > 0, there exists εR > 0 such that

inf
Bxα (R

√
µα)

Bα ≥ εR

for all α. Since
√
µα � µα for α� 1, there is a whole region in which we

see bubbles in C 0, and where bubbles may interact one with another even
though they do not interact at the H1-level. Any (a priori) C 0-theory will
have to take care of the possible interactions of bubbles at the C 0-level.
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Theorem : (C 0-theory, Druet-H.-Robert, 2004)

Let (hα)α be a sequence in C 0,θ converging in C 0,θ to some h∞. Let
(uα)α be a bounded sequence in H1 of solutions of (Eα). Assume that
∆g + h∞ is coercive. There exist k ∈ N, a nonnegative solution u∞ of
the limit equation (E∞), and k bubbles (B i

α)α, i = 1, . . . , k, such that,
up to a subsequence,

(1− εα)u∞(x) +
1

C

k∑
i=1

B i
α(x)

≤ uα(x) ≤ (1 + εα)u∞(x) + C
k∑

i=1

B i
α(x)

(C 0E )

for all x ∈ M and all α, where C > 1 is independent of α and x , and
(εα) is a sequence of positive real numbers, independent of x , such that
εα → 0 as α→ +∞. Moreover, (H1E ) holds true with u∞, k, and these
(B i
α)α.

Rk : The condition that ∆g + h∞ should be coercive is a necessary (and
sufficient) condition in order to get (C 0E ).
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In other words (e.g. when k = 2) :

Elliptic stability - Part III - Blow-up theories



In other words (e.g. when k = 2) :

Moreover

uα = u∞ +
k∑

i=1

B i
α + Rα ,

where Rα → 0 in H1. In some sense, though (see Rk1 above) we cannot
formally assume that ‖Rα‖L∞ → 0 in (H1E ), the C 0-theory provides
sharp upper and lower bounds where Rα ≡ 0.

The theorem has another variant we get from the Green’s representation
of the uα’s which gives the exact asymptotic formula for the uα’s.
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Let G∞ be the Green’s fct of ∆g + h∞ and Φ : M ×M → R+ be given by

Φ(x , y) = (n − 2)ωn−1dg (x , y)n−2G∞(x , y) ,

where ωn−1 is the volume of the (n − 1)-sphere. Then Φ is continuous in
M ×M and Φ = 1 on the diagonal.

Theorem : (C 0 exact asymptotic formula, Druet-H.-Robert, 2004)

For any sequence (xα)α in M,

uα(xα) =
(

1 + o(1)
)
u∞(xα) +

k∑
i=1

(
Φ(xi , xα) + o(1)

)
B i
α(xα) ,

where the xi ’s are the limits of the centers of the B i
α’s.

In particular, the constant C in (C 0E ) can be taken as close as we want
to 1 when standing in small balls Bxi (δ), 0 < δ � 1.

Of course, C 0-theory ⇒ H1-theory ⇒ Lp-theory (when we restrict
ourselves to sequences of solutions and not only to PS sequences).
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Thank you for your attention !
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