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PART V. PROOFS OF THE BOUNDED STABILITY AND ANALYTIC
STABILITY THEOREMS.

II.1) Proof of the bounded stability theorem.

II.2) Proof of the analytic stability theorem.
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NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.
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PART V. PROOFS.

V.1) Proof of the bounded stability theorem :

We discuss the proof of the bounded stability theorem. The proof follows
the scheme of the original proofs by Schoen and Li-Zhu (1999). We follow
here the presentation by Druet (2004). A recent very nice reorganisation
of the proof is by Druet and Premoselli (2014). The equation is

∆gu + hu = u2?−1 .

We require that ∆g + h is coercive (it has to be nonnegative if we want
the uα’s to exist), and we require that for any x ∈ M,

h(x) <
n − 2

4(n − 1)
Sg (x) . (H)

The model case then is a sequence

∆gu + hαu = u2?−1

of critical stationary Schrödinger equations, with hα → h in C 1, and a
sequence (uα)α of solutions of these equations with no energy
assumptions at all. We assume by contradiction that ‖uα‖L∞ → +∞ as
α→ +∞. Here n ≥ 3.
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We look for blow-up points like the ones which would be given by the
H1-theory if the uα’s were bounded in H1. A very general result is as
follows : given u ∈ C 1(M,R), there exist N ∈ N? and a family
(x1, . . . , xN) of critical points of u such that

dg (xi , xj)
n−2

2 u(xi ) ≥ 1

for all i 6= j , and (
min
i

dg (xi , x)
) n−2

2

u(x) ≤ 1

for all critical points of u. From this result we can prove that for any α,
there exist Nα ∈ N?, and critical points x1,α, . . . , xNα,α of uα such that

dg (xi,α, xj,α)
n−2

2 uα(xi,α) ≥ 1

for all i 6= j , and (
min
i

dg (xi,α, x)
) n−2

2

uα(x) ≤ C

for some C > 0 and not only all critical points of uα, but for all x ∈ M.
The first goal then is to prove that the following lemma holds true.
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Lemma : Assume nothing when n = 3 or (H) when n ≥ 4. Then blow-up
points are isolated.

Proof : We define

dα = min
1≤i<j≤Nα

dg (xi,α; xj,α) ,

and if Nα = 1, we set dα =
ig
4 , where ig is the injectivity radius. We want

to prove that dα 6→ 0 as α→ +∞. We proceed by contradiction and we
assume that

dα → 0

as α→ +∞. Then Nα ≥ 2, and we order x1,α, . . . , xNα,α such that

dα = dg (x1,α, x2,α) ≤ dg (x1,α, x3,α) ≤ · · · ≤ dg (x1,α, xNα,α) .

Given R > 0 we define NR,α ∈ {1, . . . ,Nα} to be such that

dg (x1,α, xi,α) ≤ Rdα for all 1 ≤ i ≤ NR,α

dg (x1,α, xi,α) > Rdα for all i > NR,α .

Obviously, NR,α ≥ 2 when R > 1. Also we can prove that (NR,α)α is
bounded for all R > 1 since Bxi,α(dα/2)

⋂
Bxj,α(dα/2) = ∅ for all i 6= j ,

and then Volg
(
Bx1,α( 3R

2 dα)
)
≥
∑NR,α

i=1 Volg
(
Bxi,α(dα/2)

)
so that we get

an upper bound on NR,α depending only on R.
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Also we can prove that for any R > 1, and any i = 1, . . . ,NR,α,

d
n−2

2
α uα(xi,α)→ +∞

as α→ +∞. Then for xα = x1,α and ρα = dα
8 there holds that

∇uα(xα) = 0 for all α ,

dg (xα, x)
n−2

2 uα(x) ≤ C for all α and all x ∈ Bxα(7ρα) ,

limα→+∞ ρ
n−2

2
α supBxα (6ρα) uα = +∞ ,

(BS)

for some C > 0 independent of α and x . There holds that uα(xα)→ +∞
as α→ +∞. Let µα = uα(xα)−

2
n−2 and define µα � rα ≤ ρα be the

radius up to which the bubble (Bα)α of center xα and weight µα does
not see any other kind of bubble (decreasing condition). We can prove a
local C 0-theory around xα up to rα with one bubble (Bα)α. Essentially
we can prove that

uα(x) + dg (xα, x)|∇uα(x)| ≤ Cµ
n−2

2
α dg (xα, x)2−n

for all α and all x ∈ Bxα(rα)\{xα}, and that

|uα(x)− Bα(x)| ≤ Cµ
n−2

2
α

(
r2−n
α + dg (xα, x)3−n)+ εαBα(x)

for all α and all x ∈ Bxα(rα)\{xα}. It follows from these estimates that :
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if rα → 0, then

rn−2
α µ

1− n
2

α uα
(
expxα(rαx)

)
→ (n(n − 2))

n−2
2

|x |n−2
+H(x)

in C 2
loc (B0(2)\{0}), where H is harmonic in B0(2). Then we use a

Pohozaev identity in Bxα(rα) and we get that

(i) if n = 3 and rα → 0, then ρα = O(rα) and H(0) = 0

(ii) when n ≥ 4 and we assume (H), it is always the case that rα → 0,
and we have that ρα = O(rα) and H(0) ≤ 0.

Now we return to the configuration xα = x1,α and ρα = dα
8 . We let ûα be

given by

ûα(x) = d
n−2

2
α uα

(
expx1,α

(dαx)
)

and let vα = d
n−2

2
α µ

1− n
2

α ûα. By the above,

vα(x)→ Λ

|x |n−2
+H(x)

around 0, where Λ > 0 and H(0) ≤ 0. On the other hand the vα’s satisfy
an equation like
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∆gαvα + d2
αĥαvα = εαv

2?−1
α

where gα → δ, ĥα(x) = hα
(

expx1,α
(dαx)

)
, and εα → 0. Let

x̂i,α =
1

dα
exp−1

x1,α
(xi,α)

for i = 1, . . . ,NR,α. Since (NR,α)α is bounded for any R > 0, we get a
locally finite at most countable collection {x̂i}i∈I of points in Rn such
that

vα → G

in C 1
loc (Rn\{x̂i}i∈I ), where, by the equation satisfied by the vα’s,

∆G = 0 in Rn\{x̂i}i∈I . Hence

G (x) =

NR∑
i=1

Λi

|x − x̂i |n−2
+ HR(x)

in B0(R), where Λi > 0 and HR is harmonic in B0(R). Then, around 0,

G (x) =
Λ1

|x |n−2
+ X (x) ,

where X (x) =
∑NR

i=2
Λi

|x−x̂i |n−2 + HR(x). In particular,
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X (x) =
Λ2

|x − x̂2|n−2
+ Y (x) .

There holds that |x̂2| = 1 (since dg (x1,α, x2,α) = dα). We also have that
G ≥ 0 and Y is harmonic in B0(R)\{x̂3, . . . , x̂NR

}. By the maximum
principle,

Y (0) ≥ min
|x|=R

Y (x)

and since
Λ1

|x |n−2
+

Λ2

|x − x̂2|n−2
+ Y (x) = G (x)

and G ≥ 0, we get that

Y (0) ≥ − Λ1

Rn−2
− Λ2

(R − 1)n−2
.

Hence, around 0,

vα(x)→ Λ1

|x |n−2
+ X (x)

in C 1
loc, and

X (0) ≥ Λ2 −
Λ1

Rn−2
− Λ2

(R − 1)n−2
.
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Picking R � 1, we get that X (0) ≥ 0. Summarizing vα → v and, around
0, {

v(x) = Λ
|x|n−2 +H(x) ,

v(x) = Λ1

|x|n−2 + X (x) ,

where Λ,Λ1 > 0, H(0) ≤ 0 and X (0) ≥ 0. A contradiction, and this ends
the proof of the Lemma stating that blow-up points are isolated. �

Now we can conclude to the proof of the bounded stability theorem. The
conclusion uses the positive mass theorem when n = 3 and is slightly
easier when n ≥ 4.

Proof of the theorem when n ≥ 4 : We let (uα)α be such that

∆guα + hαuα = u2?−1
α

in M for all α. We assume that hα → h in C 1 and h < n−2
4(n−1)Sg . By

contradiction we assume that ‖uα‖L∞ → +∞ as α→ +∞. Let xα be a
point where uα is maximum. Up to passing to a subsequence, since
dα 6→ 0, there exists i such that

dg (xi,α, xα)→ 0

as α→ +∞. Moreover, dg (xi,α, x)
n−2

2 uα(x) ≤ C for all x ∈ Bxi (δ),
where xi,α → xi and 0 < δ � 1. Then, by the definition of xα,
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dg (xα, x)uα(x)
2

n−2

≤ dg (xi,α, x)uα(x)
2

n−2 + dg (xi,α, xα)uα(x)
2

n−2

≤ C + dg (xi,α, xα)uα(xα)
2

n−2

≤ 2C

for all x ∈ Bxi (δ). In particular,
∇uα(xα) = 0 for all α ,

dg (xα, x)
n−2

2 uα(x) ≤ C for all α and all x ∈ Bxα(7ρα) ,

limα→+∞ ρ
n−2

2
α supBxα (6ρα) uα = +∞ ,

(BS)

holds true with xα and ρα = δ for 0 < δ � 1 fixed. However we have
seen that ρα = O(rα) and rα → 0. A contradiction. This proves the
bounded stability theorem when n ≥ 4. �
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V.2) Proof of the analytic stability theorem :

We discuss the proof of the analytic stability theorem. The equation is

∆gu + hu = u2?−1 .

We require that ∆g + h is coercive (it has to be nonnegative if we want
the uα’s to exist), and we require that for any x ∈ M,

h(x) 6= n − 2

4(n − 1)
Sg (x) . (H)

These two conditions make that we can deal with large h’s. The model
case then is a sequence

∆gu + hαu = u2?−1

of critical stationary Schrödinger equations, with hα → h in C 1, and a
sequence (uα)α of solutions of these equations with ‖uα‖H1 = O(1). We
assume by contradiction that ‖uα‖L∞ → +∞ as α→ +∞. Here n ≥ 4.
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By the H1-theory,

uα = u∞ +
k∑

i=1

B i
α + Rα ,

where u∞, the limit profile function solves the limit system, the (B i
α)α’s

are bubbles, and Rα → 0 in H1 as α→ +∞. A priori we can have
accumulations of bubbles (contrary to the bounded stability case where
such a situation is impossible). On a drawing the H1-theory tells us that

The H1-theory is not enough to prove the analytic stability theorem, we
need the C 0-theory.
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By the C 0-theory, there exist C > 1 and a sequence (εα)α converging to
zero such that

(1− εα)u∞(x) +
1

C

k∑
i=1

B i
α(x)

≤ uα(x) ≤ (1 + εα)u∞(x) + C
k∑

i=1

B i
α(x)

for all x ∈ M and all α. In other words, for instance when k = 2,

From this control we get sharp exact asymptotics for the uα’s :

uα =
(
1 + o(1)

)
u∞ +

k∑
i=1

(
Φ(xi , ·) + o(1)

)
B i
α ,

where Φ ∈ C 0 (M ×M,R) equals one on the diagonal.
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The range of interaction ri,α of a bubble (B i
α)α is the radius up to which

the bubble (B i
α)α is leading and at which it starts interacting with

another bubble. Assume for instance that we have 3 bubbles (2
interacting + 1), that u∞ 6≡ 0, that dg (x1,α, x2,α) = o (µ1,α) and that
µ2,α = o (µ1,α). Then we get that

Namely r1,α =
√
µ1,α, r3,α =

√
µ3,α, and r2,α ∼

√
µ1,αµ2,α. As we can

check, B1
α(xα) = B2

α(xα) if and only if dg (x2,α, xα) ∼ r2,α.
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Let µα be the maximum weight given by µα = maxi µi,α. By the

C 0-theory, if ri,α = o
(√

µi,α/µα

)
, then

rn−2
i,α µ

1− n
2

i,α uα
(

expxi,α(ri,αx)
)
→ (n(n − 2))

n−2
2

|x |n−2
+Hi (x)

in C 2
loc (B0(δ)\{0}) as α→ +∞ for 0 < δ � 1, where Hi is a harmonic

function in B0(δ) satisfying that Hi (0) 6= 0 and ∇Hi (0) ≡ 0. Moreover,
when µi,α ∼ maxj µj,α, then

Hi (x) =
∑
j∈Ii

λi,j
|x − xi,j |n−2

+

(
lim

α→+∞
rn−2
i,α µ

1− n
2

i,α

)
u∞(xi ) ,

where xi is the limit of the xi,α’s,λi,j > 0 for all i , j , the xi,j ’s are given by

xi,j = lim
α→+∞

1

ri,α
exp−1

xi,α(xj,α) ,

and (to make things simples) Ii consist of the j ’s such that µj,α ∼ µi,α.

When µi,α ∼ maxj µj,α, the condition ri,α = o
(√

µi,α/µα

)
means

nothing but that ri,α → 0.
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The Pohozaev identity around the xi,α’s at a scale like ri,α ⇒ when
n = 4 that (

h(xi )−
1

6
Sg (xi ) + o(1)

)
µ2
i,α ln

ri,α
µi,α

= O (µi,αµα) + o

(
µ2
i,α ln

1

µi,α

)
in general ,

= C0 (Hi (0) + o(1))µ2
i,αr
−2
i,α + o

(
µ2
i,α ln

1

µi,α

)
when ri,α = o

(√
µi,α/µα

)
, where C0 > 0 is dimensional constant, and

h = lim hα’s. And when n ≥ 5,(
h(xi )−

n − 2

4(n − 1)
Sg (xi ) + o(1)

)
µ2
i,α

= O
(
µ

n−2
2

i,α µ
n−2

2
α

)
in general ,

= C0 (Hi (0) + o(1))µn−2
i,α r2−n

i,α

when ri,α = o
(√

µi,α/µα

)
, where C0 > 0, h are as above.
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We also have by the very first definition of the range of influence that

ri,α ≤
√
µi,α if u∞ 6≡ 0 .

In particular, ri,α → 0 as α→ +∞ if u∞ 6≡ 0. Picking i such that

µi,α ∼ maxj µj,α, the condition ri,α = o
(√

µi,α/µα

)
is satisfied. Then it

follows from the Pohozaev expansions that

(Hi (0) + o(1))µ2
i,αr
−2
i,α = O

(
µ2
i,α ln

1

µi,α

)
if n = 4 ,

(Hi (0) + o(1))µn−2
i,α r2−n

i,α = O
(
µ2
i,α

)
if n ≥ 5 .

Since µ2
i,αr
−2
i,α ≥ Cµi,α, we get that Hi (0) = 0 when n = 4 and n = 5, a

contradiction with H1(0) 6= 0. This proves that

u∞ ≡ 0

when n = 4, 5.
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Still by the Pohozaev expansions, it follows from (H) that ri,α → 0 for all
i such that µi,α ∼ maxj µj,α. Let I1 be the set of such indices i ,
µ1,α = maxj µj,α, and let i ∈ I1 be such that

dg (x1,α, xi,α) ≥ dg (x1,α, xj,α)

for all j ∈ I1. Then the xi,j ’s all lie in a ball in the Euclidean space whose
boundary contains 0, and they are not 0. In particular, for this i , there
exists a vector νi ∈ Rn such that |νi | = 1 and 〈xi,j , νi 〉 > 0 for all j ∈ I1.
By the expression for Hi , namely

Hi (x) =
∑
j∈Ii

λi,j
|x − xi,j |n−2

+

(
lim

α→+∞
rn−2
i,α µ

1− n
2

i,α

)
u∞(xi ) ,

we get that

∇Hi (0).νi =
∑
j

λi,j〈xi,j , νi 〉
|xi,j |n

,

a contradiction with ∇Hi (0) ≡ 0. This proves the analytic stability
theorem. �
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Thank you for your attention !
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