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NOTE : The blue writing is what you have to write down to be able to
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We discuss the proof of the bounded stability theorem. The proof follows
the scheme of the original proofs by Schoen and Li-Zhu (1999). We follow

here the presentation by Druet (2004). A recent very nice reorganisation
of the proof is by Druet and Premoselli (2014). The equation is

Agu—+ hu = T

We require that A, + h is coercive (it has to be nonnegative if we want
the u,'s to exist), and we require that for any x € M,

n—2
h(x) < m%(X) : (H)

The model case then is a sequence
Agu+ hou = 1

of critical stationary Schrodinger equations, with h, — hin C!, and a

sequence (Ug ), Of solutions of these equations with no energy

assumptions at all. We assume by contradiction that ||ug||;~ — +00 as

o — +o0o. Here n > 3.



We look for blow-up points like the ones which would be given by the
H'-theory if the u,'s were bounded in H!. A very general result is as
follows : given u € C1(M,R), there exist N € N* and a family
(x1,...,xn) of critical points of u such that

n—2

e (xi,) "7 u(x;) > 1

for all i # j, and

n—2

(miin dg(x,-,x)) ’ u(x) <1

for all critical points of u. From this result we can prove that for any «,
there exist N, € N*, and critical points x o, ..., Xn, o Of U such that

n—2

2 Ua(Xi,a) Z 1

dg(Xi,ijﬂ)

for all / # j, and

n—2

(mjn dg(x,-ﬂ,x)) ’ un(x) < C

1

for some C > 0 and not only all critical points of u,, but for all x € M.
The first goal then is to prove that the following lemma holds true.
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Lemma : Assume nothing when n = 3 or (H) when n > 4. Then blow-up
points are isolated.

Proof : We define

dy, = min d Xi o) Xi

and if N, =1, we set d, = Z' where iz is the injectivity radius. We want
to prove that d, 4 0 as @ — +00. We proceed by contradiction and we
assume that

d, — 0

as o — +00. Then N, > 2, and we order xi 4, ..., Xn,, o Such that
da = dg(lea,Xz’a) S dg(Xl,a7X3,a) § e S dg(Xl,ouXNa,a) .
Given R > 0 we define Ng , € {1,..., N,} to be such that
dg(Xl,a7Xi,a) < Rda for all 1 < i < NR’Q
dg(X1,0s Xi o) > Rdy forall i > Ng 4 .
Obviously, Ng o > 2 when R > 1. Also we can prove that (Ng q)a is
bounded for all R > 1 since By, ,(da/2) () By (da/2) = 0 for all i # j,

and then Vol, (B,, . (3Rd,)) > > SV Vol (Bx;..(da/2)) so that we get
an upper bound on Ng.. depending only on R.
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Also we can prove that forany R > 1, and any i =1,...,Ng,,

n—2

do? Uq(Xiq) = +00

as @ — 400. Then for x, = x1,o and p, = %’ there holds that

Vua(xy) =0 for all |
dg(Xe, X)"T o (x) < C for all a and all x € B, (7pa) , (BS)

n—2
liMa— 400 P’ SUPB,_(6p.) Ua = +00,

for some C > 0 independent of « and x. There holds that uy(x,) = +00

as a — +oo. Let po = ua(xa)_n2T2 and define o < ry < po be the
radius up to which the bubble (B,), of center x, and weight p, does
not see any other kind of bubble (decreasing condition). We can prove a
local C%theory around x, up to r, with one bubble (B,),. Essentially
we can prove that

U (%) + g (X, )| Vit (X)) < Cpia? dg (0, )2
for all a and all x € By (ra)\{Xa}, and that
[ua(x) = Bal)| < Clta® (27" + dgl(xa, )*™") + 20 Ba(x)

for all & and all x € By (fo)\{Xa}. It follows from these estimates that :
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if r, — 0, then

(n(n —2))*="

‘X|n—2

n—2, 1—

r e gu(l (expxa(rax)) — + H(x)

in C7 _(Bo(2)\{0}), where # is harmonic in Bo(2). Then we use a
Pohozaev identity in By (r,) and we get that

(i) if n=3and r, — 0, then p, = O(r,) and H(0) =0

(ii) when n > 4 and we assume (H), it is always the case that r, — 0,
and we have that p, = O(r,) and H(0) < 0.

Now we return to the configuration x, = x1,o and p, = %“. We let i, be
given by

n—2

Uo(X) = du? Uy (expxl‘(,(dax))

n—

2 1-2.
and let v, = do?® o ?Us. By the above,

Vo (x) = M% + H(x)

around 0, where A > 0 and H(0) < 0. On the other hand the v, 's satisfy
an equation like
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Ag Vo + difnxva = savg*l
where g, — 0, ho(x) = hy (eprm(dax)), and €, — 0. Let
)A(i,a =

@ exp;}a (xi.a)

fori=1,...,Ngq. Since (Ng o) is bounded for any R > 0, we get a
locally finite at most countable collection {X;};., of points in R" such
that

Vo — G
in Clloc (R™\{%X;}ier), where, by the equation satisfied by the v,'s,
AG=0in Rn\{)?,'},'el. Hence

Ng
A;
=Y o+ H
) — [x — %2 + Hr(x)

in Bo(R), where A; > 0 and Hg is harmonic in By(R). Then, around 0,

A
|X‘n—2

G(x) = + X(x) ,

N ,
where X(x) = >".%, W + Hgr(x). In particular,



N |X - )?2|”72
There holds that [%| = 1 (since dg(x1,4,X2,o) = do). We also have that
G > 0 and Y is harmonic in Bo(R)\{%3, ..., Xn, }. By the maximum

X(x) +Y(x).

principle,
Y (0) > ‘nl*ninR Y (x)
and since A A
1 2
Y(x)=G
|x[72 + x — %p|n2 + Y(x) (x)
and G > 0, we get that
A Ao

Hence, around 0,

s~
in Cloc’ and
A1 N>

Rn—2 - (R_ ]_)n—2 :
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Picking R > 1, we get that X(0) > 0. Summarizing v, — v and, around

0,

v(x) = M% + H(x),

V(x) = i+ X(x)
where A;A; > 0, H(0) < 0 and X(0) > 0. A contradiction, and this ends
the proof of the Lemma stating that blow-up points are isolated. |

Now we can conclude to the proof of the bounded stability theorem. The
conclusion uses the positive mass theorem when n = 3 and is slightly
easier when n > 4.

Proof of the theorem when n > 4 : We let (u,), be such that

Agug + hy uOt:u2 -1

in M for all a. We assume that h, — hin C' and h <y = 1)5 By

contradiction we assume that ||ug||iec — 400 as @ — +oo Let x, be a
point where u,, is maximum. Up to passing to a subsequence, since
d, # 0, there exists i such that

dg(X,',a, Xa) —0

as a — +00. Moreover, dé,,(x,-,a,x)"%2 ua(x) < C for all x € B,,(9),
where x; o — X;j and 0 < § < 1. Then, by the definition of x,,
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dg(Xas X)Ua(X) =

< dg (X000 X) e (X) 77 + dg(Xi,0s Xa ) Ua (X) 72
2

< C + dg(Xi,omon)uoz(xoz)m
<2C

for all x € By (9). In particular,

Vua(xa) =0 forall a,

g (%, X)"T ta(x) < C forall @ and all x € B, (7pa) (BS)

|ima—>+oo Pa2 SUpBXa (6ps) Yo = +o0 ,

holds true with x, and p, = d for 0 < § < 1 fixed. However we have
seen that p, = O(r,) and r, — 0. A contradiction. This proves the

bounded stability theorem when n > 4. |
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V.2) Proof of the analytic stability theorem : J

We discuss the proof of the analytic stability theorem. The equation is
Agu+ hu= T

We require that Ag + h is coercive (it has to be nonnegative if we want
the u,'s to exist), and we require that for any x € M,

ho) # s S(x) (H)

(1)

These two conditions make that we can deal with large h's. The model
case then is a sequence

Agu+ hou = u?

of critical stationary Schrédinger equations, with h, — hin C!, and a

sequence (uq ), Of solutions of these equations with ||u, | m = O(1). We
assume by contradiction that ||uy ||~ — 400 as & = +00. Here n > 4.
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By the H!-theory,
K

ua:uoo—i—ZB(;—i—Ra,

i=1

where u,,, the limit profile function solves the limit system, the (B!),'s
are bubbles, and R, — 0 in H! as & — +00. A priori we can have

accumulations of bubbles (contrary to the bounded stability case where
such a situation is impossible). On a drawing the H!-theory tells us that

Uq /\+/\/\ +WWWV\MA
A
= U + ZB(Q + R(y
=1

The H'-theory is not enough to prove the analytic stability theorem, we
need the CO-theory.
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By the CC-theory, there exist C > 1 and a sequence (g4), converging to
zero such that

1L
(1 o)) + ¢ 2 Bi)
< ua(x) < (14 eq)uso(x +CZB’

for all x € M and all «. In other words, for instance when k = 2,

i
k=2 (14 e+ CY_ B,
=
/\/\,
(1~ ca)une + E;Bg

From this control we get sharp exact asymptotics for the u,'s :
Ua = (14 0(1) Uoo+z (xi,") +0(1)) Bl ,

where ® € C%(M x M, R) equals one on the diagonal.
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The range of interaction r; , of a bubble (B.,), is the radius up to which
the bubble (BY),, is leading and at which it starts interacting with
another bubble. Assume for instance that we have 3 bubbles (2
interacting + 1), that us, # 0, that dg(x1,0,%2,o) = 0 (1,o) and that
H2.o = 0(p11,0). Then we get that

Coon r

Namely ri o = \/li1.a, B0 = \/H3,a, and 12 o ~ \/[11,a /42, AS we can

check, B}(xa) = B2(x,) if and only if dg(x2,0s Xa) ~ M.a-
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Let f1o be the maximum weight given by 11, = max; 1j o. By the
CO-theory, if r;o =0 (\/,u,-,a/ua), then

n—2

—n -2 2
ri'3;2u},a2 Ug (expxl_ya(r,-,ax)) — (n(n=2)) 7 + Hi(x)

|X|n—2

in C2.(Bo(6)\{0}) as a@ — +oo for 0 < § < 1, where H, is a harmonic
function in By(d) satisfying that #;(0) # 0 and VH;(0) = 0. Moreover,
when p; o ~ max; fij ., then

. 2 1-—
Z |X_le|n Iy — x. .[n—2 + <a£Too lna Hia ) (Xi) )

JEI;

where x; is the limit of the x; »'s,A\;; > 0 for all i, j, the x; ;'s are given by

xij= lim expx_l_‘la (Xj,a) >

a—+o0 li o

and (to make things simples) /; consist of the j's such that pj o ~ pj o-

When p1j o ~ max; jij o, the condition r; , = 0 (,//L,-ﬁ/ua) means
nothing but that r; , — 0.
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The Pohozaev identity around the x; ,'s at a scale like r; , = when
n =4 that

1 i,a
(#00) = 5Sa0) + 0(0) ) s tn 222

1 > .
in general ,

io

=0 (Mi,aﬂa) +o (ILLI%O( In

1
— G (Hi(0) + o(L)) 12ur 2+ o (uia - )

when r; , =0 (\/u;’a/,ua), where Cy > 0 is dimensional constant, and
h=Ilimh,'s. And when n > 5,

(h(x,-) - L‘(”n;fl)sg(x;) + o(l)) 1 o

n—2 n—2
=0 (ui’i Lol ) in general ,
= Co (Hi(0) + o(1)) 27"

i«

when r;, =0 («/u,;a/,ua), where Cp > 0, h are as above.



We also have by the very first definition of the range of influence that

li,a < VvV HMi« if U §é 0.

In particular, rj o, = 0 as a@ — +o0 if us # 0. Picking i such that
Hia ~ Max; lij o, the condition r; o = 0 (\//QL,-ya/,ua> is satisfied. Then it

follows from the Pohozaev expansions that
2 -2 2 1 .
(H:(0) + 0(1)) pEari = O (1Fatn - ) ifn=4,
i«

(H:(0) + o(l))uf’)jr?*" =0 (ui,) ifn>5.

i,

Since ,u,%ar,ﬁ > Clij.o, We get that H;(0) =0 when n=4and n=5, a
contradiction with #;(0) # 0. This proves that

Uso =0

when n =4 5.
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Still by the Pohozaev expansions, it follows from (H) that r; , — 0 for all
i such that p; o ~ max; pij . Let /; be the set of such indices /,
H1,0 = MaX; [4j o, and let i € I} be such that

dg(X1,05 Xi,a) > dg(Xt,005 Xj,0)

for all j € I1. Then the x; ;s all lie in a ball in the Euclidean space whose
boundary contains 0, and they are not 0. In particular, for this i, there
exists a vector v; € R" such that |v;| =1 and (x;j,v;) > 0 for all j € /.
By the expression for H;, namely

A _ o ia
Hi(x) = Z W + < lim r,-'jaz;Li,J) Uso(Xi)

a——+oo

we get that
Aij{Xij, Vi
VH(0)y = 3 2t i)

iglm

J
a contradiction with VH;(0) = 0. This proves the analytic stability
theorem. m
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Thank you for your attention!
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