Elliptic stability for stationary Schrödinger equations
by
Emmanuel Hebey

Part V/VI Proofs March 2015

Nonlinear analysis arising from geometry and physics Conference in honor of Professor Abbas Bahri

PART V. PROOFS OF THE BOUNDED STABILITY AND ANALYTIC STABILITY THEOREMS.

II.1) Proof of the bounded stability theorem.

II.2) Proof of the analytic stability theorem.

NOTE: The blue writing is what you have to write down to be able to follow the slides presentation.

PART V. PROOFS.

V.1) Proof of the bounded stability theorem :

We discuss the proof of the bounded stability theorem. The proof follows the scheme of the original proofs by Schoen and Li-Zhu (1999). We follow here the presentation by Druet (2004). A recent very nice reorganisation of the proof is by Druet and Premoselli (2014). The equation is

$$\Delta_g u + hu = u^{2^*-1} .$$

We require that $\Delta_g + h$ is coercive (it has to be nonnegative if we want the u_{α} 's to exist), and we require that for any $x \in M$,

$$h(x) < \frac{n-2}{4(n-1)} S_g(x)$$
 (H)

The model case then is a sequence

$$\Delta_g u + h_\alpha u = u^{2^* - 1}$$

of critical stationary Schrödinger equations, with $h_{\alpha} \to h$ in C^1 , and a sequence $(u_{\alpha})_{\alpha}$ of solutions of these equations with no energy assumptions at all. We assume by contradiction that $\|u_{\alpha}\|_{L^{\infty}} \to +\infty$ as $\alpha \to +\infty$. Here $n \geq 3$.

We look for blow-up points like the ones which would be given by the H^1 -theory if the u_α 's were bounded in H^1 . A very general result is as follows: given $u \in C^1(M,\mathbb{R})$, there exist $N \in \mathbb{N}^*$ and a family (x_1,\ldots,x_N) of critical points of u such that

$$d_g(x_i,x_j)^{\frac{n-2}{2}}u(x_i)\geq 1$$

for all $i \neq j$, and

$$\left(\min_{i} d_{g}(x_{i}, x)\right)^{\frac{n-2}{2}} u(x) \leq 1$$

for all critical points of u. From this result we can prove that for any α , there exist $N_{\alpha} \in \mathbb{N}^{*}$, and critical points $x_{1,\alpha}, \ldots, x_{N_{\alpha},\alpha}$ of u_{α} such that

$$d_g(x_{i,\alpha},x_{j,\alpha})^{\frac{n-2}{2}}u_\alpha(x_{i,\alpha})\geq 1$$

for all $i \neq j$, and

$$\left(\min_{i} d_{g}(x_{i,\alpha},x)\right)^{\frac{n-2}{2}} u_{\alpha}(x) \leq C$$

for some C > 0 and not only all critical points of u_{α} , but for all $x \in M$. The first goal then is to prove that the following lemma holds true.

Lemma : Assume nothing when n = 3 or (H) when $n \ge 4$. Then blow-up points are isolated.

Proof: We define

$$d_{\alpha} = \min_{1 \leq i < j \leq N_{\alpha}} d_{g}(x_{i,\alpha}; x_{j,\alpha}) ,$$

and if $N_{\alpha}=1$, we set $d_{\alpha}=\frac{i_g}{4}$, where i_g is the injectivity radius. We want to prove that $d_{\alpha}\not\to 0$ as $\alpha\to+\infty$. We proceed by contradiction and we assume that

$$d_{\alpha} \rightarrow 0$$

as $\alpha \to +\infty$. Then $N_{\alpha} \geq 2$, and we order $x_{1,\alpha}, \ldots, x_{N_{\alpha},\alpha}$ such that

$$d_{\alpha} = d_{g}(x_{1,\alpha}, x_{2,\alpha}) \leq d_{g}(x_{1,\alpha}, x_{3,\alpha}) \leq \cdots \leq d_{g}(x_{1,\alpha}, x_{N_{\alpha},\alpha}) .$$

Given R > 0 we define $N_{R,\alpha} \in \{1, \dots, N_{\alpha}\}$ to be such that

$$d_g(x_{1,\alpha}, x_{i,\alpha}) \le Rd_{\alpha}$$
 for all $1 \le i \le N_{R,\alpha}$
 $d_g(x_{1,\alpha}, x_{i,\alpha}) > Rd_{\alpha}$ for all $i > N_{R,\alpha}$.

Obviously, $N_{R,\alpha} \geq 2$ when R > 1. Also we can prove that $(N_{R,\alpha})_{\alpha}$ is bounded for all R > 1 since $B_{\mathsf{x}_{i,\alpha}}(d_{\alpha}/2) \cap B_{\mathsf{x}_{j,\alpha}}(d_{\alpha}/2) = \emptyset$ for all $i \neq j$, and then $\mathsf{Vol}_{g}\left(B_{\mathsf{x}_{1,\alpha}}(\frac{3R}{2}d_{\alpha})\right) \geq \sum_{i=1}^{N_{R,\alpha}} \mathsf{Vol}_{g}\left(B_{\mathsf{x}_{i,\alpha}}(d_{\alpha}/2)\right)$ so that we get an upper bound on $N_{R,\alpha}$ depending only on R.

Also we can prove that for any R > 1, and any $i = 1, ..., N_{R,\alpha}$,

$$d_{\alpha}^{\frac{n-2}{2}}u_{\alpha}(x_{i,\alpha})\to +\infty$$

as $\alpha \to +\infty$. Then for $x_{\alpha}=x_{1,\alpha}$ and $\rho_{\alpha}=\frac{d_{\alpha}}{8}$ there holds that

$$\begin{cases} \nabla u_{\alpha}(x_{\alpha}) = 0 & \text{for all } \alpha \ , \\ d_{g}(x_{\alpha}, x)^{\frac{n-2}{2}} u_{\alpha}(x) \leq C & \text{for all } \alpha \text{ and all } x \in B_{x_{\alpha}}(7\rho_{\alpha}) \ , \\ \lim_{\alpha \to +\infty} \rho_{\alpha}^{\frac{n-2}{2}} \sup_{B_{x_{\alpha}}(6\rho_{\alpha})} u_{\alpha} = +\infty \ , \end{cases}$$
 (BS)

for some C>0 independent of α and x. There holds that $u_{\alpha}(x_{\alpha}) \to +\infty$ as $\alpha \to +\infty$. Let $\mu_{\alpha} = u_{\alpha}(x_{\alpha})^{-\frac{2}{n-2}}$ and define $\mu_{\alpha} \ll r_{\alpha} \leq \rho_{\alpha}$ be the radius up to which the bubble $(B_{\alpha})_{\alpha}$ of center x_{α} and weight μ_{α} does not see any other kind of bubble (decreasing condition). We can prove a local C^0 -theory around x_{α} up to r_{α} with one bubble $(B_{\alpha})_{\alpha}$. Essentially we can prove that

$$|u_{\alpha}(x) + d_{g}(x_{\alpha}, x)|\nabla u_{\alpha}(x)| \leq C\mu_{\alpha}^{\frac{n-2}{2}}d_{g}(x_{\alpha}, x)^{2-n}$$

for all α and all $x \in B_{x_{\alpha}}(r_{\alpha}) \setminus \{x_{\alpha}\}$, and that

$$|u_{\alpha}(x) - B_{\alpha}(x)| \le C \mu_{\alpha}^{\frac{n-2}{2}} \left(r_{\alpha}^{2-n} + d_{g}(x_{\alpha}, x)^{3-n} \right) + \varepsilon_{\alpha} B_{\alpha}(x)$$

for all α and all $x \in B_{x_{\alpha}}(r_{\alpha}) \setminus \{x_{\alpha}\}$. It follows from these estimates that :

if $r_{\alpha} \rightarrow 0$, then

$$r_{\alpha}^{n-2}\mu_{\alpha}^{1-\frac{n}{2}}u_{\alpha}\left(\exp_{x_{\alpha}}(r_{\alpha}x)\right) \rightarrow \frac{\left(n(n-2)\right)^{\frac{n-2}{2}}}{|x|^{n-2}} + \mathcal{H}(x)$$

in $C^2_{loc}(B_0(2)\setminus\{0\})$, where \mathcal{H} is harmonic in $B_0(2)$. Then we use a Pohozaev identity in $B_{x_\alpha}(r_\alpha)$ and we get that

- (i) if n=3 and $r_{\alpha} \rightarrow 0$, then $\rho_{\alpha} = O(r_{\alpha})$ and $\mathcal{H}(0) = 0$
- (ii) when $n \ge 4$ and we assume (H), it is always the case that $r_{\alpha} \to 0$, and we have that $\rho_{\alpha} = O(r_{\alpha})$ and $\mathcal{H}(0) \le 0$.

Now we return to the configuration $x_{\alpha}=x_{1,\alpha}$ and $\rho_{\alpha}=\frac{d_{\alpha}}{8}.$ We let \hat{u}_{α} be given by

$$\hat{u}_{\alpha}(x) = d_{\alpha}^{\frac{n-2}{2}} u_{\alpha} \left(\exp_{x_{1,\alpha}}(d_{\alpha}x) \right)$$

and let $v_{\alpha}=d_{\alpha}^{\frac{n-2}{2}}\mu_{\alpha}^{1-\frac{n}{2}}\hat{u}_{\alpha}.$ By the above,

$$v_{\alpha}(x) \to \frac{\Lambda}{|x|^{n-2}} + \mathcal{H}(x)$$

around 0, where $\Lambda>0$ and $\mathcal{H}(0)\leq 0$. On the other hand the ν_{α} 's satisfy an equation like

$$\Delta_{g_{\alpha}} v_{\alpha} + d_{\alpha}^{2} \hat{h}_{\alpha} v_{\alpha} = \varepsilon_{\alpha} v_{\alpha}^{2^{*}-1}$$

where $g_{\alpha} \to \delta$, $\hat{h}_{\alpha}(x) = h_{\alpha}\left(\exp_{x_{1,\alpha}}(d_{\alpha}x)\right)$, and $\varepsilon_{\alpha} \to 0$. Let

$$\hat{x}_{i,lpha} = rac{1}{d_lpha} \exp_{x_{1,lpha}}^{-1}(x_{i,lpha})$$

for $i=1,\ldots,N_{R,\alpha}$. Since $(N_{R,\alpha})_{\alpha}$ is bounded for any R>0, we get a locally finite at most countable collection $\{\hat{x}_i\}_{i\in I}$ of points in \mathbb{R}^n such that

$$v_{\alpha} \rightarrow G$$

in $C^1_{\text{loc}}(\mathbb{R}^n\setminus\{\hat{x}_i\}_{i\in I})$, where, by the equation satisfied by the v_α 's, $\Delta G=0$ in $\mathbb{R}^n\setminus\{\hat{x}_i\}_{i\in I}$. Hence

$$G(x) = \sum_{i=1}^{N_R} \frac{\Lambda_i}{|x - \hat{x}_i|^{n-2}} + H_R(x)$$

in $B_0(R)$, where $\Lambda_i > 0$ and H_R is harmonic in $B_0(R)$. Then, around 0,

$$G(x) = \frac{\Lambda_1}{|x|^{n-2}} + X(x) ,$$

where $X(x) = \sum_{i=2}^{N_R} \frac{\Lambda_i}{|x-\hat{x}_i|^{n-2}} + H_R(x)$. In particular,

$$X(x) = \frac{\Lambda_2}{|x - \hat{x}_2|^{n-2}} + Y(x)$$
.

There holds that $|\hat{x}_2| = 1$ (since $d_g(x_{1,\alpha}, x_{2,\alpha}) = d_\alpha$). We also have that $G \ge 0$ and Y is harmonic in $B_0(R) \setminus \{\hat{x}_3, \dots, \hat{x}_{N_R}\}$. By the maximum principle,

$$Y(0) \ge \min_{|x|=R} Y(x)$$

and since

$$\frac{\Lambda_1}{|x|^{n-2}} + \frac{\Lambda_2}{|x - \hat{x}_2|^{n-2}} + Y(x) = G(x)$$

and $G \geq 0$, we get that

$$Y(0) \geq -\frac{\Lambda_1}{R^{n-2}} - \frac{\Lambda_2}{(R-1)^{n-2}}$$
.

Hence, around 0,

$$v_{\alpha}(x) \rightarrow \frac{\Lambda_1}{|x|^{n-2}} + X(x)$$

in C^1_{loc} , and

$$X(0) \ge \Lambda_2 - \frac{\Lambda_1}{R^{n-2}} - \frac{\Lambda_2}{(R-1)^{n-2}}$$
.

Picking $R\gg 1$, we get that $X(0)\geq 0$. Summarizing $v_{\alpha}\to v$ and, around 0,

$$\begin{cases} v(x) = \frac{\Lambda}{|x|^{n-2}} + \mathcal{H}(x) ,\\ v(x) = \frac{\Lambda_1}{|x|^{n-2}} + X(x) , \end{cases}$$

where $\Lambda, \Lambda_1 > 0$, $\mathcal{H}(0) \leq 0$ and $X(0) \geq 0$. A contradiction, and this ends the proof of the Lemma stating that blow-up points are isolated.

Now we can conclude to the proof of the bounded stability theorem. The conclusion uses the positive mass theorem when n=3 and is slightly easier when $n\geq 4$.

Proof of the theorem when $n \ge 4$: We let $(u_{\alpha})_{\alpha}$ be such that

$$\Delta_{g} u_{\alpha} + h_{\alpha} u_{\alpha} = u_{\alpha}^{2^{\star} - 1}$$

in M for all α . We assume that $h_{\alpha} \to h$ in C^1 and $h < \frac{n-2}{4(n-1)}S_g$. By contradiction we assume that $\|u_{\alpha}\|_{L^{\infty}} \to +\infty$ as $\alpha \to +\infty$. Let x_{α} be a point where u_{α} is maximum. Up to passing to a subsequence, since $d_{\alpha} \not\to 0$, there exists i such that

$$d_g(x_{i,\alpha},x_{\alpha})\to 0$$

as $\alpha \to +\infty$. Moreover, $d_g(x_{i,\alpha},x)^{\frac{n-2}{2}}u_{\alpha}(x) \leq C$ for all $x \in B_{x_i}(\delta)$, where $x_{i,\alpha} \to x_i$ and $0 < \delta \ll 1$. Then, by the definition of x_{α} ,

$$d_{g}(x_{\alpha}, x)u_{\alpha}(x)^{\frac{2}{n-2}}$$

$$\leq d_{g}(x_{i,\alpha}, x)u_{\alpha}(x)^{\frac{2}{n-2}} + d_{g}(x_{i,\alpha}, x_{\alpha})u_{\alpha}(x)^{\frac{2}{n-2}}$$

$$\leq C + d_{g}(x_{i,\alpha}, x_{\alpha})u_{\alpha}(x_{\alpha})^{\frac{2}{n-2}}$$

$$\leq 2C$$

for all $x \in B_{x_i}(\delta)$. In particular,

$$\begin{cases} \nabla u_{\alpha}(x_{\alpha}) = 0 & \text{for all } \alpha \ , \\ d_{g}(x_{\alpha}, x)^{\frac{n-2}{2}} u_{\alpha}(x) \leq C & \text{for all } \alpha \text{ and all } x \in B_{x_{\alpha}}(7\rho_{\alpha}) \ , \\ \lim_{\alpha \to +\infty} \rho_{\alpha}^{\frac{n-2}{2}} \sup_{B_{x_{\alpha}}(6\rho_{\alpha})} u_{\alpha} = +\infty \ , \end{cases}$$
 (BS)

holds true with x_{α} and $\rho_{\alpha}=\delta$ for $0<\delta\ll 1$ fixed. However we have seen that $\rho_{\alpha}=O(r_{\alpha})$ and $r_{\alpha}\to 0$. A contradiction. This proves the bounded stability theorem when $n\geq 4$.

V.2) Proof of the analytic stability theorem :

We discuss the proof of the analytic stability theorem. The equation is

$$\Delta_g u + hu = u^{2^*-1} .$$

We require that $\Delta_g + h$ is coercive (it has to be nonnegative if we want the u_{α} 's to exist), and we require that for any $x \in M$,

$$h(x) \neq \frac{n-2}{4(n-1)} S_g(x)$$
 (H)

These two conditions make that we can deal with large h's. The model case then is a sequence

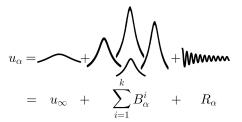
$$\Delta_g u + h_\alpha u = u^{2^* - 1}$$

of critical stationary Schrödinger equations, with $h_{\alpha} \to h$ in C^1 , and a sequence $(u_{\alpha})_{\alpha}$ of solutions of these equations with $\|u_{\alpha}\|_{H^1} = O(1)$. We assume by contradiction that $\|u_{\alpha}\|_{L^{\infty}} \to +\infty$ as $\alpha \to +\infty$. Here $n \geq 4$.

By the H^1 -theory,

$$u_{\alpha} = u_{\infty} + \sum_{i=1}^{k} B_{\alpha}^{i} + R_{\alpha} ,$$

where u_{∞} , the limit profile function solves the limit system, the $(B_{\alpha}^{i})_{\alpha}$'s are bubbles, and $R_{\alpha} \to 0$ in H^{1} as $\alpha \to +\infty$. A priori we can have accumulations of bubbles (contrary to the bounded stability case where such a situation is impossible). On a drawing the H^{1} -theory tells us that



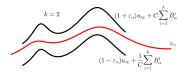
The H^1 -theory is not enough to prove the analytic stability theorem, we need the C^0 -theory.

By the C^0 -theory, there exist C>1 and a sequence $(\varepsilon_\alpha)_\alpha$ converging to zero such that

$$(1 - \varepsilon_{\alpha})u_{\infty}(x) + \frac{1}{C} \sum_{i=1}^{k} B_{\alpha}^{i}(x)$$

$$\leq u_{\alpha}(x) \leq (1 + \varepsilon_{\alpha})u_{\infty}(x) + C \sum_{i=1}^{k} B_{\alpha}^{i}(x)$$

for all $x \in M$ and all α . In other words, for instance when k = 2,

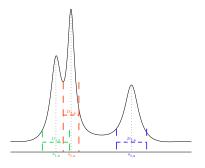


From this control we get sharp exact asymptotics for the u_{α} 's :

$$u_{\alpha} = (1 + o(1))u_{\infty} + \sum_{i=1}^{k} (\Phi(x_i, \cdot) + o(1))B_{\alpha}^i,$$

where $\Phi \in C^0(M \times M, \mathbb{R})$ equals one on the diagonal.

The range of interaction $r_{i,\alpha}$ of a bubble $(B^i_\alpha)_\alpha$ is the radius up to which the bubble $(B^i_\alpha)_\alpha$ is leading and at which it starts interacting with another bubble. Assume for instance that we have 3 bubbles (2 interacting + 1), that $u_\infty \not\equiv 0$, that $d_g(x_{1,\alpha},x_{2,\alpha}) = o\left(\mu_{1,\alpha}\right)$ and that $\mu_{2,\alpha} = o\left(\mu_{1,\alpha}\right)$. Then we get that



Namely $r_{1,\alpha}=\sqrt{\mu_{1,\alpha}}$, $r_{3,\alpha}=\sqrt{\mu_{3,\alpha}}$, and $r_{2,\alpha}\sim\sqrt{\mu_{1,\alpha}\mu_{2,\alpha}}$. As we can check, $B^1_{\alpha}(x_{\alpha})=B^2_{\alpha}(x_{\alpha})$ if and only if $d_g(x_{2,\alpha},x_{\alpha})\sim r_{2,\alpha}$.

Let μ_{α} be the maximum weight given by $\mu_{\alpha}=\max_{i}\mu_{i,\alpha}$. By the C^0 -theory, if $r_{i,\alpha}=o\left(\sqrt{\mu_{i,\alpha}/\mu_{\alpha}}\right)$, then

$$r_{i,\alpha}^{n-2}\mu_{i,\alpha}^{1-\frac{n}{2}}u_{\alpha}\left(\exp_{x_{i,\alpha}}(r_{i,\alpha}x)\right)\to \frac{\left(n(n-2)\right)^{\frac{n-2}{2}}}{|x|^{n-2}}+\mathcal{H}_{i}(x)$$

in $C_{loc}^2\left(B_0(\delta)\backslash\{0\}\right)$ as $\alpha\to+\infty$ for $0<\delta\ll1$, where \mathcal{H}_i is a harmonic function in $B_0(\delta)$ satisfying that $\mathcal{H}_i(0)\neq0$ and $\nabla\mathcal{H}_i(0)\equiv0$. Moreover, when $\mu_{i,\alpha}\sim\max_j\mu_{j,\alpha}$, then

$$\mathcal{H}_i(x) = \sum_{j \in I_i} \frac{\lambda_{i,j}}{|x - x_{i,j}|^{n-2}} + \left(\lim_{\alpha \to +\infty} r_{i,\alpha}^{n-2} \mu_{i,\alpha}^{1-\frac{n}{2}}\right) u_{\infty}(x_i) ,$$

where x_i is the limit of the $x_{i,\alpha}$'s, $\lambda_{i,j} > 0$ for all i,j, the $x_{i,j}$'s are given by

$$x_{i,j} = \lim_{\alpha \to +\infty} \frac{1}{r_{i,\alpha}} \exp_{x_{i,\alpha}}^{-1} (x_{j,\alpha}) ,$$

and (to make things simples) I_i consist of the j's such that $\mu_{j,\alpha} \sim \mu_{i,\alpha}$. When $\mu_{i,\alpha} \sim \max_j \mu_{j,\alpha}$, the condition $r_{i,\alpha} = o\left(\sqrt{\mu_{i,\alpha}/\mu_{\alpha}}\right)$ means nothing but that $r_{i,\alpha} \to 0$.

The Pohozaev identity around the $x_{i,\alpha}$'s at a scale like $r_{i,\alpha} \Rightarrow$ when n=4 that

$$\begin{split} &\left(h(x_i) - \frac{1}{6}S_g(x_i) + o(1)\right)\mu_{i,\alpha}^2 \ln\frac{r_{i,\alpha}}{\mu_{i,\alpha}} \\ &= O\left(\mu_{i,\alpha}\mu_{\alpha}\right) + o\left(\mu_{i,\alpha}^2 \ln\frac{1}{\mu_{i,\alpha}}\right) \quad \text{in general }, \\ &= C_0\left(\mathcal{H}_i(0) + o(1)\right)\mu_{i,\alpha}^2 r_{i,\alpha}^{-2} + o\left(\mu_{i,\alpha}^2 \ln\frac{1}{\mu_{i,\alpha}}\right) \end{split}$$

when $r_{i,\alpha} = o\left(\sqrt{\mu_{i,\alpha}/\mu_{\alpha}}\right)$, where $C_0 > 0$ is dimensional constant, and $h = \lim_{n \to \infty} h_{\alpha}$'s. And when n > 5.

$$\left(h(x_i) - \frac{n-2}{4(n-1)}S_g(x_i) + o(1)\right)\mu_{i,\alpha}^2$$

$$= O\left(\mu_{i,\alpha}^{\frac{n-2}{2}}\mu_{\alpha}^{\frac{n-2}{2}}\right) \text{ in general },$$

$$= C_0\left(\mathcal{H}_i(0) + o(1)\right)\mu_{i,\alpha}^{n-2}r_{i,\alpha}^{2-n}$$

when $r_{i,\alpha} = o\left(\sqrt{\mu_{i,\alpha}/\mu_{\alpha}}\right)$, where $C_0 > 0$, h are as above.

We also have by the very first definition of the range of influence that

$$r_{i,\alpha} \leq \sqrt{\mu_{i,\alpha}}$$
 if $u_{\infty} \not\equiv 0$.

In particular, $r_{i,\alpha} \to 0$ as $\alpha \to +\infty$ if $u_\infty \not\equiv 0$. Picking i such that $\mu_{i,\alpha} \sim \max_j \mu_{j,\alpha}$, the condition $r_{i,\alpha} = o\left(\sqrt{\mu_{i,\alpha}/\mu_\alpha}\right)$ is satisfied. Then it follows from the Pohozaev expansions that

$$\begin{split} \left(\mathcal{H}_{i}(0)+o(1)\right)\mu_{i,\alpha}^{2}r_{i,\alpha}^{-2} &= O\left(\mu_{i,\alpha}^{2}\ln\frac{1}{\mu_{i,\alpha}}\right) \text{ if } n=4 \ , \\ \left(\mathcal{H}_{i}(0)+o(1)\right)\mu_{i,\alpha}^{n-2}r_{i,\alpha}^{2-n} &= O\left(\mu_{i,\alpha}^{2}\right) \text{ if } n\geq 5 \ . \end{split}$$

Since $\mu_{i,\alpha}^2 r_{i,\alpha}^{-2} \ge C \mu_{i,\alpha}$, we get that $\mathcal{H}_i(0) = 0$ when n = 4 and n = 5, a contradiction with $\mathcal{H}_1(0) \ne 0$. This proves that

$$u_{\infty}\equiv 0$$

when n = 4, 5.

Still by the Pohozaev expansions, it follows from (H) that $r_{i,\alpha} \to 0$ for all i such that $\mu_{i,\alpha} \sim \max_j \mu_{j,\alpha}$. Let I_1 be the set of such indices i, $\mu_{1,\alpha} = \max_j \mu_{j,\alpha}$, and let $i \in I_1$ be such that

$$d_{g}(x_{1,\alpha},x_{i,\alpha}) \geq d_{g}(x_{1,\alpha},x_{j,\alpha})$$

for all $j \in I_1$. Then the $x_{i,j}$'s all lie in a ball in the Euclidean space whose boundary contains 0, and they are not 0. In particular, for this i, there exists a vector $\nu_i \in \mathbb{R}^n$ such that $|\nu_i| = 1$ and $\langle x_{i,j}, \nu_i \rangle > 0$ for all $j \in I_1$. By the expression for \mathcal{H}_i , namely

$$\mathcal{H}_i(x) = \sum_{j \in I_i} \frac{\lambda_{i,j}}{|x - x_{i,j}|^{n-2}} + \left(\lim_{\alpha \to +\infty} r_{i,\alpha}^{n-2} \mu_{i,\alpha}^{1-\frac{n}{2}}\right) u_{\infty}(x_i) ,$$

we get that

$$\nabla \mathcal{H}_i(0).\nu_i = \sum_i \frac{\lambda_{i,j} \langle x_{i,j}, \nu_i \rangle}{|x_{i,j}|^n} ,$$

a contradiction with $\nabla \mathcal{H}_i(0) \equiv 0$. This proves the analytic stability theorem.

