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NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.
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Let (M, g) be a closed manifold of dimension n > 3. Let mg, m; > 0 and
g > 0. Let w € (—mg,+mp), and p € (2,2*]. We consider the
electrostatic KGMP reduced system
Agu+m§u=u”_1+w2(qv—1)2u ()
Dgv+ (md + q?u?) v = qu?. “
We assume my > 0 (Proca formalism). If not the case, v = ‘—17 and the

two equations are independent one from another. If (u,e"“=*) and
(Va)a solve our system, then

{Agua + Mg = 1P 4+ w2 (qva — 1)% g (5.)
«

Dgva + (M2 + q2u2) v = qu .
The soliton family (uqe™"“=*)  has finite energy if [ua [ = O(1). Let
Sp(w) = {(ue‘i“’t, v), u,v >0 smooth, which solve (Sw)}, and for

U= (ue=™t v), let also ||U]|cz0 = ||ul|c20 + ||v

|C2,9.
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Definition (a priori bound, stable phase, resonant state)

Let (M, g) be a smooth compact Riemannian manifold of dimensions
n>3. Let my,m; >0, g >0, and p € (2,2*]. Let w € (—myg, +mp). We
say that

(i) w gives rise to the a priori bound property if there exist ¢ > 0 and
C > 0 such that ||| cze < C for all U € Sp(@) and all
@€ (w—e,w+e),

(i) w is a stable phase if for any sequence (une™ ™)  of finite
energy standing waves, and any sequence (v, )o of gauge electric fields,
solutions of (S, ), the convergence w, — w in R implies that, up to a
subsequence, u, — u and v, — v in C?, where ue~"“t and v solve (S,).
At last we say that w is a resonant phase, or give rise to resonant states,
if there exist a sequence (une™"“«t) of finite energy standing waves,
and a sequence (v,), of gauge electric fields, solutions of (S,), s.t.
wo — w and ||ua |l + ||Vallte — +00 as o — +o0.

A priori bound property =- phase stability property
(Bounded stability property) = (Analytic stability property)
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Variational structure, natural energy functional :
S(u,v) / |Vul?dv, — —/ |Vv|2dvg+—/ v’ dv,

2 1
e ml/ 2dvg—f/ updvg——/ (1—gqv)? dvg .
2 M P Jm

Define ® : H' — H! by

Agd(u) + (mf + q2u2) d(u) = qu® .

We can prove that @ is differentiable when n = 3, 4. Define /, by

1 2 1
f/ \Vu|2dvg+@/ uidv, — f/ (uT)Pdvg
2 Jm 2 Jm PJm
w? )
—5 M(l — qP(u)) utdvg .

The critical points of /, are the solutions of (S,).
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Goals : prove the existence of solutions to our systems, *) prove the a
priori bound property, prove the phase stability property when the a priori
bound property does not hold true, and prove the existence of resonant
states when the phase stability property does not hold true.

In the subcritical case (analogue of the Gidas-Spruck theorem) :

Theorem 0 (Subcritical case; Druet-H., 2010; H.Truong, 2012)

N.B. : Thm 0 prevents existence of standing waves with arbitrarily large
amplitudes.

(*) . We look for variational solutions such as mountain pass solutions for Ip (ground
states models in the Nehari-Rabinowitz sense).
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Question : when p = 2* what should we require on mg, my, and w in
order to get a similar result 7 What about resonant states?

Theorem 1 (A priori bounds; Druet-H., 2010; H.-Truong, 2012)

Concerning existence when n = 4 we just need to have (1) at one point
in M. The problem is local in that case. When n = 3 we may replace the
scalar curvature term by the maximum potential term for which we do
have positivity of the mass.
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Consequence 1 :
Whatever mg is, there exists g9 > 0 such that we do get existence and a

priori bounds in the range m3 — g9 < w? < m3 (phase compensation).

Consequence 2:
In case m3 < ( Sg, we do get existence and a priori bounds for all
phases, and thus for the full range of phases.

Here again we prevent the existence of standing waves with arbitrarily
large amplitudes (e.g., when mg > 1, fast oscillating standing waves
cannot have arbitrarily large amplitudes).

When mg > 1, Theorem 1 answers our question for large w's, and we are

left With the question for the other values of w, namely when
w? < mg— (n 1)5 Here the answer depends strongly on the dimension.
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Theorem 2 (3-dim resonant states; H.-Wei, 2012)

For any such wy, there exists (u,e™'“=t), and (v4)a solutions of

Aguy + miu, = ug_l +w? (qve — 1)2 U, (5.)
Dgvo + (M2 + q2u2) v = qu? ¢

for all a, such that wy, — wk and |[ug |z + ||Val|Lee — 400 as o = +0o0
(and k bubbles are involved in the construction).

The condition g°w? # cx(m1) is automatically satisfied when we require
that gmg < my.
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Theorem 3 (4-dimensional phase stability ; Druet-H.-Vétois, 2013)

N.B. : the first part of the result holds true even when S, is not positive.
In particular all phases are stable when S, < 0 in M (like in the model
cases of flat torii and compact hyperbolic spaces).

The first part of the theorem is false when n = 3 by the preceding
theorem (establishing the existence of a whole family of resonant states

for small w's).
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Summarizing in the S* and S* model cases :

[1] Case of S% : (4(n 5% = =3)

Resonant States™™? A priori bounds™™

(No resonant states)

X < iotetede
DX <Pt
X < iotetede
X < iotetede
3 < ioletode

2 2
0 mg — (n— 1) 5 mg w?

[2] Case of S* : (4(";_21) Sg = 2)

Thml

Phase stability™? A priori bounds
(No resonant states) (No resonant states)

Resonant states™m?

&
*
*
)
¥
X

2 2
0 my — 4(n 1 S mg w?
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VI1.2) The Einstein-Lichnerowicz equation : J

Let (M, g) be a closed manifold of dimension n > 3. Consider the

constraint system of general relativity in the conformal method setting :
Agu+ hu = 1+ 52
_# oy u (ELCE)
AgX = TU”’ZVT‘FTV’w s

where u, X are the unknowns and h, f, a are given by

n—2

h:m(sgflvlbf) ;

n—2 n—1,
=t (V- 1)
n—2 2 5
a:m(|a+£gX| +7°) .

The conformal method, starting from given physics data (¢, 7, 7,0) and
V, generates initial data sets for the original initial constraint system of
equations by the parametrization rule

(&R, 7) = (g Turttg + 0o + LX), 00 P (P

Elliptic stability - Part VI - Applications



Using the Choquet-Bruhat-Geroch theorem (CBG), we get space-time
developments solutions of the Einstein equations. This is the
Choquet-Bruhat-Geroch-Lichnerowicz (CBGL) formalism which we
summarize here :

Freely chosen physics data (¢, 7, 7,0) and V

Step 1 : Solving (ELCE)
Solution(s) (u, X) of (ELCE)

Step 2 : (Par)

Initial data set(s) (g, K., 7”1')

Step 3 : CBG-Thm

Maximal space-time development(s) (M, h, V)

Question : is the CBGL formalism robust with respect to the initial
choice of the physics data (v, 7, 7,0) and V' of the conformal method ?

Existence for CMC focusing case (7 = C*, f > 0) : Hebey-Pacard-Pollack
(2008). Robustness for CMC focusing case : Druet-Hebey (2009).
Existence for the full system in the focusing case : Premoselli (2014).
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In the 3-dimensional case, the robustness question for the full system in
the focusing case is due to Druet and Premoselli (2014). The more
general case is due to Premoselli (2015).

Theorem 4 (Stability of the CBGL formalism ; Premoselli 2015)

Let (M, g) be a closed locally conformally flat Riemannian manifold of
dimension n > 3. Assume that the data are focusing (f > 0) and that

m % 0. If n > 6, assume in addition that 7 and ) have no common
critical points in M. Let (V,)a and (Da)a, Do = (Yo, Tas Tay 0 ) bE
sequences of potentials and of physics data converging respectively to V
and D in the following topology :
[Va=Vlc+lra=Tllc+Ya—vlctma—7llcotlloa—0llco — 0.

a—+00
Consider (uq, Xa)a a sequence of solutions of the Einstein-Lichnerowicz

constraints system with physics data D, and V,,. Then, up to a
subsequence and up to conformal Killing 1-forms, the sequence (uq, Xa)a
converges in C1(M), for any 0 < 1 < 1, to some solution (up, Xp) of
the limiting Einstein-Lichnerowicz constraints system of equations with
physics data D and V. In particular, the CBGL formalism is stable with
respect to the choice of generic focusing initial data (v, 7, 7,0) and V in
any locally conformally flat geometry in M.
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VI.3) The Kirchhoff equation : J

Let (M, g) be a closed manifold of dimension n > 3, (a4)s and (by)a be
two sequences of positive real numbers, and (h, ), be a sequence of
Cl-functions h, : M — R. Consider

(20 + o / VuPdvg) Byt + hou = 2" (Ka)
M

A sequence (uq ), is said to be a sequence of nonnegative solutions of
(Ky) if the u,'s are nonnegative and solve the a-equation (K,,) for any «.

We always assume in the sequel that the a,’'s and b,'s converge in R,
and that the h,'s converge in Cl. We regard such (K,)'s as
perturbations of the orginal Kirchhoff system (K) :

(a + b/ \vu|2dvg)Agu 4ohy =21 (K)
M

Both (K) and (K,) have a variational structure.
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The (K,)'s come with [, : H' — R given by

o ba ?
Io(u) = % /M Vuldvg + = </M |Vu|2dvg)

1 1 N
—l-f/ hauzdvg——/ lu™)? dv, .
2 m 2% Im

Let (uq)a be a sequence in H'. As before we say that the sequence
(Uq)a is a Palais-Smale sequence for (Iy)q if @ (i) the Iy (uy)'s are
bounded, (ii) and I/ (uy) — 0 in (H')" as a — +oo0.
The H!-theory for the blow-up applies here : for any PS-sequence (uq)q
of nonnegative functions, up to passing to a subsequence,

k 1

Uo = oo+ Y _ M7 BL+R, (H'Dec) ,

i=1
where, u, solves (K), k is an integer, the (B!),'s are bubbles, the R,'s
converge strongly to 0 in H!, and the M, s, which come from the
nonlocal aspects of the equations, are given by

M(x = an t+ bn/ |Vua|2dvg .
M
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The sequence (Uy)q blows up if k > 1. We define

N(up) = max{k in (H'Dec) for subsequences of (ua)a} ,

the maximal number of bubbles we can have in H!-dec. of subsequences
of the u,’s.

Theorem 5 : (H.-Thizy, 2014)
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The following corollary holds true.

Corollary : (H.-Thizy, 2014)
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In the higher dimensional case, let's assume that

n—2
e

where S, scalar curvature of g.

Theorem 6 : (H.-Thizy, 2014)
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More results : Let (M, g) be a closed Riemannian n-manifold, n > 4,
a,b>0,and he C'(M,R) be s.t. Ay + Lhis coercive. Assume one of

the following assumptions :
n—4

(1) (H-compactness) a and b satisfy that bKn*”a"%4 > 2 (”*4> ’

n—2 \ n—2
when n > 5, and bK4_4 > 1 when n =4,
(2) (positive geometries) S, > 0 everywhere in M, and

(n—2)a _p n=4
h(X) < m (1 + bKn a? ) Sg(X)
for all x € M,
(3) (nonpositive geometries) h(x) > 0 for all x € M, 5; <0
everywhere in M, and n=50r n > 7,

where S, is the scalar curvature of g, and K, is the sharp Sobolev
constant. Then for any 6 € (0,1), there exists C > 0 such that
lluallcze < C for all (an)a: (ba)a converging to a and b, all (hy)q in
C! (M, R) converging C! to h, and all sequences (h, ). of nonnegative
solutions of (K,). 4+ Existence of nonnegative (nontrivial) solutions in
cases (1) and (2).
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VI1.4) Proof of Theorem 5 based on the bounded stability theorem : J

Here n = 3. We want to prove that sequences (uy ), of solutions of (K,)
are bounded in H! and that the number k of bubbles we can have in
H1-decompositions of such sequences is bounded from above by

a+bK;3VCk< C,

where C > 0 is such that h < CAg, and Ay > 0 is such that Az + A,
has positive mass. The proof is typical of the 3-dimensional blow-up
analysis. Let (u,)q be a sequence of nonnegative nontrivial solutions of
(Ka)- We use the 3-dimensional blow-up machinery and get that

3 — dim. blow-up machinery = Blow-up points are isolated

= the u,’s are bounded in H'.

Then we can assume that M, — M., as a — 4o0. Still by the
3-dimensional blow-up analysis we get that there need to be a point
where the mass of the vectorial Schrodinger operator Mo A, + h is
nonpositive. By comparison principles this implies that ﬁh can't be less
than Ag.
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In other words,
3 — dim. blow-up machinery (again) = 3Ix € M s.t.h(x) > M Ag(x)
and u,, = 0.

Of course we recover the Hl-decomposition of the u,'s since the u,'s are
bounded in H. In 3-space dimension, [,,|VBa|?dv, = K5 + o(1). By
the splitting of the energy associated with (H'Dec), and since u,, =0,

M, def aq + ba/ |Vua|2dvg
M

— a2y + by, <\/MakK3‘3 + o(1)) .
Passing to the limit & — 400, Mu = a+ bky/MKj 3, and then
bkK; 3 + \/b2k2K; ® + 4a
V Moo = 5 .

There exist s x € M such that h(x) > Mo, Ag(x). By assumption
h < CAg. Then M, < C, and we easily get that

a+ bK;3VCk< C.

This is exactly what Theorem 5 says. |
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VI1.5) Proof of the corollary : J

We want to prove that if h: M — R is such that A + %h is coercive and

1 1
h(x) < <a + §b2K3_6 + §bK3_3\/4a + b2K3‘6> Ag(x)

for all x € M, where A, > 0 is a positive function such that A; + A, has
positive mass, then

(i) the Kirchhoff system (K) has a nonnegative nontrivial C2-solution,

(i) V0 € (0,1), 3C > 0 such that ||uy||c2e < C for all sequences
(3a)a and (by)a converging to a and b, all sequences (h, ) of
C!-functions h, : M — R converging C! to h, and all sequences (uy)q of
nonnegative solutions of (Kj).

The proof of (i) and (ii) is based on Theorem 5 showing that Theorem 5
remains valid if we replace the 2*-exponent in (K,) by subcritical
exponents p, < 2*, p, — 2* (and this is true by the possible extension
of the bounded stability theorem to asymptotically critical subcritical
exponents).
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We consider perturbations like

(aa + ba/ |Vu|2dvg>Agu + hqu = uPe (Ka)
M

where a, — a, by = b, ha — hin CY, and p, < 2%, po — 2* as

« — +00. Theorem 5 remains true in this context : for any sequence
(ua)a of nonnegative solutions of (K, ), the u,'s are bounded in H! and,
up to a subsequence, the number k of bubbles they can have in their
H'-decomposition is s.t. a + bK3_3\FCk < C, where C > 0 is such that
h < CAg. The subcritical equations always have nonnegative nontrivial
solutions (variational arguments). By elliptic theory, it remains to prove
that we can't have k > 1. In particular, the corollary holds true if

a+bK3_3\/E> C, and
at+bK;3WC>C &

1, ¢ 1 -
C<a+ Eb?/<3 °+ 5PKs 3\/4a+ b2K;C .

The coercivity of Ag + %h implies that the limit profile uy, #Z 0. This
proves the corollary. |
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VI1.6) Proof of Theorem 6 based on the bounded stability and the
analytic stability theorems :

We mix here the two type of blow-up arguments : the bounded stability
argument (to prove boundedness in H! when n = 4), and the analytic
stability argument. Let (34)a, (ba)a, (ha)a be such that a, — a,

by — b, hy — hin C! as a — +o0. Let (uy)a be a sequence of
nonnegatlve nontrivial solutlons of (Ky). Recall we assume S, > 0 in M.
Suppose M, — 4o00. Then, ‘* —0,0< ( 1)5 and

(Arg.1) Bounded stability theory = Blow-up points are isolated
= the u,'s are bounded in H?,

a contradiction ! In particular, the u,'s are bounded in H! and we get
Hl-decompositions for the u,'s. Assume the u,'s blow up. Then

(Arg.2) Analytic Stability theory = u, =0 (n= 4,5)

n—2
msg(x)

where M, is the limit of the M,'s defined as before.

1
and 3 x € M s.t. M—ooh(x) =



By assumption

n—2
h= —=5
4(n—1)"%
and thus (by the Analytic Stability theory) we need to have that
My = 1. H'-decomposition (and u,, = 0) imply that

an + ba/ |V Ua|?dv,
M

2
= a+ bkK,;"M3 % + o(1) .

def
M

a —

Then

2
My = a+ bkK, "Mss 2,
and since M., = 1, this implies that

1—a

=K "k .

b n
In other words, 17
Theorem 6.

2 € K, "N* if the u,'s blow up. This clearly proves

Elliptic stability - Part VI - Applications



Thank you for your attention!
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