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PART VI. APPLICATIONS TO OUR ORIGINAL EQUATIONS.

VI.1) The Klein-Gordon-Maxwell-Proca system.

VI.2) The Einstein-Lichnerowicz equation.

VI.3) The Kirchhoff equation.

VI.4) Proof of (Kirchhoff) Theorem 5 based on the bounded stability
theorem.

VI.5) Proof of (Kirchhoff) corollary.

VI.6) Proof of (Kirchhoff) Theorem 6 based on the bounded stability and
the analytic stability theorems.
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NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.
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PART VI. APPLICATIONS

VI.1) The Klein-Gordon-Maxwell-Proca system :

Let (M, g) be a closed manifold of dimension n ≥ 3. Let m0,m1 > 0 and
q > 0. Let ω ∈ (−m0,+m0), and p ∈ (2, 2?]. We consider the
electrostatic KGMP reduced system{

∆gu + m2
0u = up−1 + ω2 (qv − 1)2 u

∆gv +
(
m2

1 + q2u2
)
v = qu2 .

(Sω)

We assume m1 > 0 (Proca formalism). If not the case, v = 1
q and the

two equations are independent one from another. If
(
uαe

−iωαt
)
α

and
(vα)α solve our system, then{

∆guα + m2
0uα = up−1α + ω2

α (qvα − 1)2 uα

∆gvα +
(
m2

1 + q2u2α
)
vα = qu2α .

(Sα)

The soliton family
(
uαe

−iωαt
)
α

has finite energy if ‖uα‖H1 = O(1). Let

Sp(ω) =
{(

ue−iωt , v
)
, u, v > 0 smooth, which solve (Sω)

}
, and for

U =
(
ue−iωt , v

)
, let also ‖U‖C 2,θ = ‖u‖C 2,θ + ‖v‖C 2,θ .
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Definition (a priori bound, stable phase, resonant state)

Let (M, g) be a smooth compact Riemannian manifold of dimensions
n ≥ 3. Let m0,m1 > 0, q > 0, and p ∈ (2, 2?]. Let ω ∈ (−m0,+m0). We
say that

(i) ω gives rise to the a priori bound property if there exist ε > 0 and
C > 0 such that ‖U‖C 2,θ ≤ C for all U ∈ Sp(ω̃) and all
ω̃ ∈ (ω − ε, ω + ε),

(ii) ω is a stable phase if for any sequence
(
uαe

−iωαt
)
α

of finite
energy standing waves, and any sequence (vα)α of gauge electric fields,
solutions of (Sα), the convergence ωα → ω in R implies that, up to a
subsequence, uα → u and vα → v in C 2, where ue−iωt and v solve (Sω).
At last we say that ω is a resonant phase, or give rise to resonant states,
if there exist a sequence

(
uαe

−iωαt
)
α

of finite energy standing waves,
and a sequence (vα)α of gauge electric fields, solutions of (Sα), s.t.
ωα → ω and ‖uα‖L∞ + ‖vα‖L∞ → +∞ as α→ +∞.

A priori bound property ⇒ phase stability property
(Bounded stability property) ⇒ (Analytic stability property)
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Variational structure, natural energy functional :

S(u, v) =
1

2

∫
M

|∇u|2dvg −
ω2

2

∫
M

|∇v |2dvg +
m2

0

2

∫
M

u2dvg

−ω
2m2

1

2

∫
M

v2dvg −
1

p

∫
M

updvg −
ω2

2

∫
M

u2(1− qv)2dvg .

Define Φ : H1 → H1 by

∆gΦ(u) +
(
m2

1 + q2u2
)

Φ(u) = qu2 .

We can prove that Φ is differentiable when n = 3, 4. Define Ip by

Ip(u) =
1

2

∫
M

|∇u|2dvg +
m2

0

2

∫
M

u2dvg −
1

p

∫
M

(u+)pdvg

−ω
2

2

∫
M

(1− qΦ(u)) u2dvg .

The critical points of Ip are the solutions of (Sω).
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Goals : prove the existence of solutions to our systems, (?) prove the a
priori bound property, prove the phase stability property when the a priori
bound property does not hold true, and prove the existence of resonant
states when the phase stability property does not hold true.

In the subcritical case (analogue of the Gidas-Spruck theorem) :

Theorem 0 (Subcritical case ; Druet-H., 2010 ; H.Truong, 2012)

Let (M, g) be a smooth compact Riemannian n-dimensional manifold,
n ≥ 3, m0,m1 > 0, and q > 0. Let p ∈ (2, 2?). For any ω ∈ (−m0,+m0)
there exists a smooth positive mountain pass solution of (Sω). Moreover,
for any θ ∈ (0, 1), there exists C > 0 such that ‖U‖C 2,θ ≤ C for all
U ∈ Sp(ω) and all ω ∈ (−m0,+m0).

N.B. : Thm 0 prevents existence of standing waves with arbitrarily large
amplitudes.

(?) : We look for variational solutions such as mountain pass solutions for Ip (ground

states models in the Nehari-Rabinowitz sense).
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Question : when p = 2? what should we require on m0, m1, and ω in
order to get a similar result ? What about resonant states ?

Theorem 1 (A priori bounds ; Druet-H., 2010 ; H.-Truong, 2012)

Let (M, g) be a smooth compact Riemannian manifold of dimensions
n = 3, 4. Let m0,m1 > 0 and q > 0 be positive real numbers. Let
ω ∈ (−m0,+m0) and p = 2?. Assume

m2
0 < ω2 +

n − 2

4(n − 1)
Sg (1)

in M, where Sg is the scalar curvature of g . Then (Sω) possesses a
smooth positive mountain pass solution. Moreover, there also holds that
for any θ ∈ (0, 1), there exists C > 0 such that ‖U‖C 2,θ ≤ C for all
U ∈ S2?(ω′) and all ω′ ∈ (−m0,+m0)\(−|ω|,+|ω|).

Concerning existence when n = 4 we just need to have (1) at one point
in M. The problem is local in that case. When n = 3 we may replace the
scalar curvature term by the maximum potential term for which we do
have positivity of the mass.
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Consequence 1 :
Whatever m0 is, there exists ε0 > 0 such that we do get existence and a
priori bounds in the range m2

0 − ε0 < ω2 < m2
0 (phase compensation).

Consequence 2 :

In case m2
0 <

n−2
4(n−1)Sg , we do get existence and a priori bounds for all

phases, and thus for the full range of phases.

Here again we prevent the existence of standing waves with arbitrarily
large amplitudes (e.g., when m0 � 1, fast oscillating standing waves
cannot have arbitrarily large amplitudes).

When m0 � 1, Theorem 1 answers our question for large ω’s, and we are
left with the question for the other values of ω, namely when
ω2 ≤ m2

0 − n−2
4(n−1)Sg . Here the answer depends strongly on the dimension.
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Theorem 2 (3-dim resonant states ; H.-Wei, 2012)

Let (S3, g) be the unit 3-sphere, m0,m1 > 0, and q > 0. Let p = 2?.
There exists a sequence (θk)k of positive real numbers, satisfying that

θ1 =
√
3
2 , θk > θ1 when k ≥ 2, and θk → +∞ as k → +∞, and there

exists a sequence (ck(m1))k , satisfying that c1(m1) = 0, ck(m1) > 0 for
k ≥ 2, and ck(m1)→ +∞ as k → +∞, such that any ωk ∈ (−m0,m0)
given by θ2k = m2

0 − ω2
k , which satisfy that q2ω2

k 6= ck(m1), is an resonant
phase for (Sω) associated with a k-spikes configuration.

For any such ωk , there exists (uαe
−iωαt)α and (vα)α solutions of{

∆guα + m2
0uα = u2

?−1
α + ω2

α (qvα − 1)2 uα

∆gvα +
(
m2

1 + q2u2α
)
vα = qu2α

(Sα)

for all α, such that ωα → ωk and ‖uα‖L∞ + ‖vα‖L∞ → +∞ as α→ +∞
(and k bubbles are involved in the construction).

The condition q2ω2
k 6= ck(m1) is automatically satisfied when we require

that qm0 � m1.
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Theorem 3 (4-dimensional phase stability ; Druet-H.-Vétois, 2013)

Let (M, g) be a smooth compact Riemannian manifold of dimension
n = 4. Let m0,m1 > 0 and q > 0 be positive real numbers. Let
ω ∈ (−m0,+m0), and p = 2?. Assume

m2
0 − ω2 6∈

[1

6
min
M

Sg ,
1

6
max
M

Sg
]

Then ω is a stable phase for (Sω). Conversely, on the standard sphere
(S4, g), when m2

0 ≥ 1
6 maxM Sg , the two ±ω’s given by the equation

m2
0 − ω2 = 1

6Sg are resonant phases for (Sω).

N.B. : the first part of the result holds true even when Sg is not positive.
In particular all phases are stable when Sg ≤ 0 in M (like in the model
cases of flat torii and compact hyperbolic spaces).

The first part of the theorem is false when n = 3 by the preceding
theorem (establishing the existence of a whole family of resonant states
for small ω’s).
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Summarizing in the S3 and S4 model cases :

[1] Case of S3 : ( n−2
4(n−1)Sg = 3

4 )

Resonant StatesThm2 A priori boundsThm1

(No resonant states)

I —

♣
♣
♣
♣
g
X —

♣
♣
♣
♣
g
X —

♣
♣
♣
♣
g
X —

♣
♣
♣
♣
g
X —

♣
♣
♣
♣
g
X —————————– I

0 m2
0 − n−2

4(n−1)Sg m2
0 ω2

[2] Case of S4 : ( n−2
4(n−1)Sg = 2)

Phase stabilityThm3 A priori boundsThm1

(No resonant states) (No resonant states)

Resonant statesThm3

I ——————————

♣
♣
♣
♣
g
X —————————— I

0 m2
0 − n−2

4(n−1)Sg m2
0 ω2
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VI.2) The Einstein-Lichnerowicz equation :

Let (M, g) be a closed manifold of dimension n ≥ 3. Consider the
constraint system of general relativity in the conformal method setting :{

∆gu + hu = fu2
?−1 + a

u2?+1−→
∆gX = n−1

n u
2n

n−2∇τ + π∇ψ ,
(ELCE)

where u,X are the unknowns and h, f , a are given by

h =
n − 2

4(n − 1)

(
Sg − |∇ψ|2

)
,

f =
n − 2

4(n − 1)

(
2V (ψ)− n − 1

n
τ 2
)
,

a =
n − 2

4(n − 1)

(
|σ + LgX |2 + π2

)
.

The conformal method, starting from given physics data (ψ, π, τ, σ) and
V , generates initial data sets for the original initial constraint system of
equations by the parametrization rule

(g̃ , K̃ , ψ̃, π̃) =

(
u

4
n−2 g ,

τ

n
u

4
n−2 g + u−2(σ + LgX ), ψ, u−

2n
n−2π

)
. (Par)
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Using the Choquet-Bruhat-Geroch theorem (CBG), we get space-time
developments solutions of the Einstein equations. This is the
Choquet-Bruhat-Geroch-Lichnerowicz (CBGL) formalism which we
summarize here :

Freely chosen physics data (ψ, π, τ, σ) and Vy Step 1 : Solving (ELCE)

Solution(s) (u,X ) of (ELCE)y Step 2 : (Par)

Initial data set(s)
(
g̃ , K̃ , ψ̃, π̃

)y Step 3 : CBG-Thm

Maximal space-time development(s) (M, h,Ψ)

Question : is the CBGL formalism robust with respect to the initial
choice of the physics data (ψ, π, τ, σ) and V of the conformal method ?

Existence for CMC focusing case (τ = C t , f > 0) : Hebey-Pacard-Pollack
(2008). Robustness for CMC focusing case : Druet-Hebey (2009).
Existence for the full system in the focusing case : Premoselli (2014).
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In the 3-dimensional case, the robustness question for the full system in
the focusing case is due to Druet and Premoselli (2014). The more
general case is due to Premoselli (2015).

Theorem 4 (Stability of the CBGL formalism ; Premoselli 2015)

Let (M, g) be a closed locally conformally flat Riemannian manifold of
dimension n ≥ 3. Assume that the data are focusing (f > 0) and that
π 6≡ 0. If n ≥ 6, assume in addition that τ and ψ have no common
critical points in M. Let (Vα)α and (Dα)α, Dα = (ψα, πα, τα, σα)α be
sequences of potentials and of physics data converging respectively to V
and D in the following topology :
‖Vα−V ‖C 2 +‖τα−τ‖C 3 +‖ψα−ψ‖C 2 +‖πα−π‖C 0 +‖σα−σ‖C 0 −→

α→+∞
0.

Consider (uα,Xα)α a sequence of solutions of the Einstein-Lichnerowicz
constraints system with physics data Dα and Vα. Then, up to a
subsequence and up to conformal Killing 1-forms, the sequence (uα,Xα)α
converges in C 1,η(M), for any 0 < η < 1, to some solution (u0,X0) of
the limiting Einstein-Lichnerowicz constraints system of equations with
physics data D and V . In particular, the CBGL formalism is stable with
respect to the choice of generic focusing initial data (ψ, π, τ, σ) and V in
any locally conformally flat geometry in M.
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VI.3) The Kirchhoff equation :

Let (M, g) be a closed manifold of dimension n ≥ 3, (aα)α and (bα)α be
two sequences of positive real numbers, and (hα)α be a sequence of
C 1-functions hα : M → R. Consider(

aα + bα

∫
M

|∇u|2dvg
)

∆gu + hαu = u2
?−1 (Kα)

A sequence (uα)α is said to be a sequence of nonnegative solutions of
(Kα) if the uα’s are nonnegative and solve the α-equation (Kα) for any α.

We always assume in the sequel that the aα’s and bα’s converge in R,
and that the hα’s converge in C 1. We regard such (Kα)’s as
perturbations of the orginal Kirchhoff system (K ) :(

a + b

∫
M

|∇u|2dvg
)

∆gu + hu = u2
?−1 (K)

Both (K) and (Kα) have a variational structure.
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The (Kα)’s come with Iα : H1 → R given by

Iα(u) =
aα
2

∫
M

|∇u|2dvg +
bα
4

(∫
M

|∇u|2dvg
)2

+
1

2

∫
M

hαu
2dvg −

1

2?

∫
M

|u+|2
?

dvg .

Let (uα)α be a sequence in H1. As before we say that the sequence
(uα)α is a Palais-Smale sequence for (Iα)α if : (i) the Iα(uα)’s are
bounded, (ii) and I ′α(uα)→ 0 in (H1)′ as α→ +∞.

The H1-theory for the blow-up applies here : for any PS-sequence (uα)α
of nonnegative functions, up to passing to a subsequence,

uα = u∞ +
k∑

i=1

M
1

2?−2
α B i

α + Rα (H1Dec) ,

where, u∞ solves (K), k is an integer, the (B i
α)α’s are bubbles, the Rα’s

converge strongly to 0 in H1, and the Mα’s, which come from the
nonlocal aspects of the equations, are given by

Mα = aα + bα

∫
M

|∇uα|2dvg .
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The sequence (uα)α blows up if k ≥ 1. We define

N (uα) = max
{
k in (H1Dec) for subsequences of (uα)α

}
,

the maximal number of bubbles we can have in H1-dec. of subsequences
of the uα’s.

Theorem 5 : (H.-Thizy, 2014)

Let (M, g) be a closed Riemannian 3-manifold, a, b > 0 be positive real
numbers, and h : M → R be a C 1-function. For any sequences (aα)α and
(bα)α of positive real numbers converging to a and b, any sequence
(hα)α of C 1-functions hα : M → R converging C 1 to h, and any sequence
(uα)α of nonnegative solutions of (Kα), there holds that ‖uα‖H1 = O(1).
Moreover, if ∆g + 1

ah is coercive, and the uα’s blow up, then

a + bK−33

√
CN (uα) ≤ C ,

where K3 is the sharp constant in the Euclidean Sobolev inequality,
N (uα) is as above, and C > 0 depends only on (M, g , h) through the
inequality h ≤ CΛg in M, where Λg > 0 is such that ∆g + Λg has
positive mass.
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The following corollary holds true.

Corollary : (H.-Thizy, 2014)

Let (M, g) be a closed Riemannian 3-manifold, and Λg > 0 be such that
∆g + Λg has positive mass. Let a, b > 0 be positive real numbers, and
h : M → R be a C 1-function such that ∆g + 1

ah is coercive. Assume that

h(x) <

(
a +

1

2
b2K−63 +

1

2
bK−33

√
4a + b2K−63

)
Λg (x)

for all x ∈ M. Then (K ) has a nonnegative nontrivial C 2-solution.
Moreover, for any θ ∈ (0, 1), there exists C > 0 such that ‖uα‖C 2,θ ≤ C
for all sequences (aα)α and (bα)α converging to a and b, all sequences
(hα)α of C 1-functions hα : M → R converging C 1 to h, and all sequences
(uα)α of nonnegative solutions of (Kα).
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In the higher dimensional case, let’s assume that

h ≡ n − 2

4(n − 1)
Sg , (?)

where Sg scalar curvature of g .

Theorem 6 : (H.-Thizy, 2014)

Let (M, g) be a closed Riemannian n-manifold with positive scalar
curvature, n = 4 or 5, a, b > 0 be positive real numbers, and h : M → R
be given by the geometric model (?). Assume that

1− a

b
6∈ K−nn N? ,

where Kn is the sharp Sobolev constant. For any θ ∈ (0, 1), there exists
C > 0 s.t. ‖uα‖C 2,θ ≤ C for all (aα)α, (bα)α converging to a and b, all
(hα)α in C 1 (M,R) converging C 1 to h, and all sequences (uα)α of
nonnegative solutions of (Kα).
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More results : Let (M, g) be a closed Riemannian n-manifold, n ≥ 4,
a, b > 0, and h ∈ C 1 (M,R) be s.t. ∆g + 1

ah is coercive. Assume one of
the following assumptions :

(1) (H1-compactness) a and b satisfy that bK−nn a
n−4
2 > 2

n−2

(
n−4
n−2

) n−4
2

when n ≥ 5, and bK−44 > 1 when n = 4,
(2) (positive geometries) Sg > 0 everywhere in M, and

h(x) <
(n − 2)a

4(n − 1)

(
1 + bK−nn a

n−4
2

)
Sg (x)

for all x ∈ M,
(3) (nonpositive geometries) h(x) > 0 for all x ∈ M, Sg ≤ 0

everywhere in M, and n = 5 or n ≥ 7,

where Sg is the scalar curvature of g , and Kn is the sharp Sobolev
constant. Then for any θ ∈ (0, 1), there exists C > 0 such that
‖uα‖C 2,θ ≤ C for all (aα)α, (bα)α converging to a and b, all (hα)α in
C 1 (M,R) converging C 1 to h, and all sequences (hα)α of nonnegative
solutions of (Kα). + Existence of nonnegative (nontrivial) solutions in
cases (1) and (2).
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VI.4) Proof of Theorem 5 based on the bounded stability theorem :

Here n = 3. We want to prove that sequences (uα)α of solutions of (Kα)
are bounded in H1 and that the number k of bubbles we can have in
H1-decompositions of such sequences is bounded from above by

a + bK−33

√
Ck ≤ C ,

where C > 0 is such that h ≤ CΛg , and Λg > 0 is such that ∆g + Λg

has positive mass. The proof is typical of the 3-dimensional blow-up
analysis. Let (uα)α be a sequence of nonnegative nontrivial solutions of
(Kα). We use the 3-dimensional blow-up machinery and get that

3− dim. blow-up machinery⇒ Blow-up points are isolated

⇒ the uα’s are bounded in H1.

Then we can assume that Mα → M∞ as α→ +∞. Still by the
3-dimensional blow-up analysis we get that there need to be a point
where the mass of the vectorial Schrödinger operator M∞∆g + h is
nonpositive. By comparison principles this implies that 1

M∞
h can’t be less

than Λg .
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In other words,

3− dim. blow-up machinery (again)⇒ ∃x ∈ M s.t.h(x) ≥ M∞Λg (x)

and u∞ ≡ 0.

Of course we recover the H1-decomposition of the uα’s since the uα’s are
bounded in H1. In 3-space dimension,

∫
M
|∇Bα|2dvg = K−33 + o(1). By

the splitting of the energy associated with (H1Dec), and since u∞ ≡ 0,

Mα
def
= aα + bα

∫
M

|∇uα|2dvg

= aα + bα
(√

MαkK
−3
3 + o(1)

)
.

Passing to the limit α→ +∞, M∞ = a + bk
√
M∞K−33 , and then

√
M∞ =

bkK−33 +
√
b2k2K−63 + 4a

2
.

There exist s x ∈ M such that h(x) ≥ M∞Λg (x). By assumption
h ≤ CΛg . Then M∞ ≤ C , and we easily get that

a + bK−33

√
Ck ≤ C .

This is exactly what Theorem 5 says. �
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VI.5) Proof of the corollary :

We want to prove that if h : M → R is such that ∆g + 1
ah is coercive and

h(x) <

(
a +

1

2
b2K−63 +

1

2
bK−33

√
4a + b2K−63

)
Λg (x)

for all x ∈ M, where Λg > 0 is a positive function such that ∆g + Λg has
positive mass, then

(i) the Kirchhoff system (K ) has a nonnegative nontrivial C 2-solution,

(ii) ∀θ ∈ (0, 1), ∃C > 0 such that ‖uα‖C 2,θ ≤ C for all sequences
(aα)α and (bα)α converging to a and b, all sequences (hα)α of
C 1-functions hα : M → R converging C 1 to h, and all sequences (uα)α of
nonnegative solutions of (Kα).

The proof of (i) and (ii) is based on Theorem 5 showing that Theorem 5
remains valid if we replace the 2?-exponent in (Kα) by subcritical
exponents pα ≤ 2?, pα → 2? (and this is true by the possible extension
of the bounded stability theorem to asymptotically critical subcritical
exponents).
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We consider perturbations like(
aα + bα

∫
M

|∇u|2dvg
)

∆gu + hαu = upα−1 , (K̃α)

where aα → a, bα → b, hα → h in C 1, and pα ≤ 2?, pα → 2? as
α→ +∞. Theorem 5 remains true in this context : for any sequence
(uα)α of nonnegative solutions of (K̃α), the uα’s are bounded in H1 and,
up to a subsequence, the number k of bubbles they can have in their
H1-decomposition is s.t. a + bK−33

√
Ck ≤ C , where C > 0 is such that

h ≤ CΛg . The subcritical equations always have nonnegative nontrivial
solutions (variational arguments). By elliptic theory, it remains to prove
that we can’t have k ≥ 1. In particular, the corollary holds true if
a + bK−33

√
C > C , and

a + bK−33

√
C > C ⇔

C < a +
1

2
b2K−63 +

1

2
bK−33

√
4a + b2K−63 .

The coercivity of ∆g + 1
ah implies that the limit profile u∞ 6≡ 0. This

proves the corollary. �
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VI.6) Proof of Theorem 6 based on the bounded stability and the
analytic stability theorems :

We mix here the two type of blow-up arguments : the bounded stability
argument (to prove boundedness in H1 when n = 4), and the analytic
stability argument. Let (aα)α, (bα)α, (hα)α be such that aα → a,
bα → b, hα → h in C 1 as α→ +∞. Let (uα)α be a sequence of
nonnegative nontrivial solutions of (Kα). Recall we assume Sg > 0 in M.
Suppose Mα → +∞. Then, hα

Mα
→ 0, 0 < n−2

4(n−1)Sg , and

(Arg.1) Bounded stability theory⇒ Blow-up points are isolated

⇒ the uα’s are bounded in H1,

a contradiction ! In particular, the uα’s are bounded in H1 and we get
H1-decompositions for the uα’s. Assume the uα’s blow up. Then

(Arg.2) Analytic Stability theory ⇒ u∞ ≡ 0 (n= 4,5)

and ∃ x ∈ M s.t.
1

M∞
h(x) =

n − 2

4(n − 1)
Sg (x)

where M∞ is the limit of the Mα’s defined as before.
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By assumption

h ≡ n − 2

4(n − 1)
Sg

and thus (by the Analytic Stability theory) we need to have that
M∞ = 1. H1-decomposition (and u∞ ≡ 0) imply that

Mα
def
= aα + bα

∫
M

|∇Uα|2dvg

= a + bkK−nn M
2

2?−2
α + o(1) .

Then

M∞ = a + bkK−nn M
2

2?−2
∞ ,

and since M∞ = 1, this implies that

1− a

b
= K−nn k .

In other words, 1−a
b ∈ K−nn N? if the uα’s blow up. This clearly proves

Theorem 6. �
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Thank you for your attention !
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