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NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.
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PART I. AN INTRODUCTION TO ELLIPTIC STABILITY.

I.1) The model equation :

(M, g) smooth compact, ∂M = ∅ (closed manifold), n ≥ 3.

Model equation
∆gu + hu = up−1 (Eh)

Varying h’s

Here : u ≥ 0, ∆g = −divg∇, h ∈ C 0,θ (typically), p ∈ (2, 2?], where
2? = 2n

n−2 is the critical Sobolev exponent. H1 Sobolev space of functions

in L2 with one derivative in L2. Then H1 ⊂ Lp for all p ≤ 2?, and

H1 ⊂ Lp is compact when p < 2?,
but not when p = 2?.

↙ ↘

Subcritical “world” 6= Critical “world”
p < 2? p = 2?

Question : How much is (Eh) robust with respect to h ?
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I.2) Equations behind the model equation :

- The Yamabe equation
- The stationary Klein-Gordon-Maxwell system
- The Einstein-Lichnerowicz equation

The Yamabe equation comes from conformal geometry and the equation
relating the scalar curvatures of conformal metrics. In the positive case
where, essentially, the scalar curvature Sg of the background metric Sg is
positive, the equation is written as

∆gu +
n − 2

4(n − 1)
Sgu = u2?−1 (Y )

and we get an equation like (Eh), where h = n−2
4(n−1)Sg is given by the

geometry (and p = 2? is critical). The LHS in (Y ) is the conformal
Laplacian (it enjoys conformal invariance).

The stationary Klein-Gordon-Maxwell system comes from a larger system
in quantum field theories which modelizes the interactions between a
charged relativistic matter scalar field and the electromagnetic field that
it generates. The full system in 3d, in Proca formalism, is written as :
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
∂2u
∂t2 + ∆gu + m2

0u = up−1 +
((

∂S
∂t + qϕ

)2 − |∇S − qA|2
)
u

∂
∂t

((
∂S
∂t + qϕ

)
u2
)
−∇.

(
(∇S − qA) u2

)
= 0

−∇.
(
∂A
∂t +∇ϕ

)
+ m2

1ϕ+ q
(
∂S
∂t + qϕ

)
u2 = 0

∆gA + ∂
∂t

(
∂A
∂t +∇ϕ

)
+ m2

1A = q (∇S − qA) u2 ,

where ∆g = (∇×)2, (A, ϕ) represents the electromagnetic field,
p ∈ (2, 2?], ψ(x , t) = u(x , t)e iS(x,t) is the particle field, m0 is its mass, q
is its charge, and m1 is the mass of (A, ϕ). Assuming A and ϕ do not
depend on t, looking for solitary waves (u(x , t) = u(x), S(x , t) = ωt),
Eqt 4 ⇒ A ≡ 0, Eqt 2 is automatically satisfied, Eqts 1 and 3 ⇔{

∆gu + m2
0u = up−1 + ω2(qv − 1)2u

∆gv +
(
m2

1 + q2u2
)
v = qu2 ,

(KGMP)

where v = ϕ. Let v = Φ(u) be given by the second equation. Then the
(KGMP) system reduces to the first equation, an equation like (Eh),
where h is given by h = m2

0 − ω2(qΦ(u)− 1)2. In particular, h depends
on u, and (in this 3d-model) h is controlled in C 0,θ.
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The Einstein-scalar field Lichnerowicz equation corresponds to the
Hamiltonian constraint in the constraint equations in the conformal
method setting (Lichnerowicz). Given (M, g) smooth compact, ∂M = ∅,
the two constraint equations (Hamiltonian + Momentum) are written
(conformal method setting) as

(CE)

{
∆gu + h0u = fu2?−1 + a

u2?+1 (EL)

∆g ,conf X = n−1
n u2?∇τ − π∇ψ (MC)

where h0, f and a are given (depending on the geometry and physics
data), u is an unknown function, X is an unknown vector field, and
∆g ,conf = ∇.L (L the conformal Killing operator). The (EL)-equation is
the Einstein-Lichnerowicz equation. It is highly nonlinear and, in the
CMC-case (where τ = C st) it fully describes the (CE)-system, since then
the two equations are independent (and (MC) is a “basic” Laplace type
equation). The negative power term in (EL) ⇒ there exists ε0 > 0 s.t.
u ≥ ε0 for all solution of the Hamiltonian constraint. Then we recover an
equation like (Eh), where h = h0 − a

u2?+2 , h depends again on u, and h is
here controlled in L∞.

There are several models hidden in our model equation (Eh) where h
depends on the solution u. The sole control on the set in which h varies
will have to matter in our theories.
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I.3) A first insight into elliptic stability :

Consider equations like
∆gu = f (x , u) , (E )

where f : M × R→ R is given, and the Laplacian ∆g = −divg∇ is the
Laplace-Beltrami operator.

Goal : define the stability (robustness) of (E ) with respect to f .

Let Sf be the set of solutions of (E ). Let P be a set of perturbations of
f , namely a family of functions f̃ : M × R→ R such that f ∈ P. For the
sake of simplicity we assume Sf̃ ⊂ C 2 for all f̃ ∈ P. Define the pointed
distance between subsets of C 2 by

d ↪→C 2 (X ;Y ) = sup
v∈X

inf
u∈Y
‖v − u‖C 2 ,

and we adopt the conventions that d ↪→C 2 (X ; ∅) = +∞ if X 6= ∅, and

d ↪→C 2 (∅;Y ) = 0 for all Y . Then, d ↪→C 2 (X ;Y ) = 0 iff X ⊂ Y , and d ↪→C 2

satisfies the triangle inequality

d ↪→C 2 (X ;Z ) ≤ d ↪→C 2 (X ;Y ) + d ↪→C 2 (Y ;Z )

for all X ,Y ,Z ⊂ C 2.
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We consider
∆gu = f (x , u) , (E )

and define two notions of stability for (E ).

Definition : (Geometric and Analytic stability)

Equation (E ) is geometrically stable with respect to a set P of
perturbations of f and a norm ‖ · ‖P on P if

∀ε > 0,∃δ > 0 s.t. ∀f̃ ∈ P, ‖f̃ − f ‖P < δ ⇒ d ↪→C 2 (Sf̃ ;Sf ) < ε ;

Equation (E ) is analytically stable with respect to P and ‖ · ‖P if for any
sequence (fα)α in P, converging to f w.r.t. ‖ · ‖P as α→ +∞, and any
sequence (uα)α of solutions of ∆guα = fα(·, uα) in M, there holds that,
up to a subsequence, uα → u in C 2 as α→ +∞, where u solves (E ).

Geometric stability expresses the fact that Sf is stable with respect to
perturbations of f . It corresponds to the continuity in P of the function
f̃ → d ↪→C 2 (Sf̃ ;Sf ). It is easily checked (by contradiction) that :

Analytic stability ⇒ Geometric stability .

The converse is false in general as we can prove below.
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An example of a geometrically stable equation which turns out to
be not analytically stable : Let λ1 ∈ Sp(∆g ) be the first nonzero
eigenvalue of ∆g , λ1 > 0. Let u0 6≡ 0 and f0 6≡ 0 be smooth functions
satisfying that ∆gu0 − λ1u0 = f0, and consider the equation

∆gu − λ1u = f0 . (E ′)

Then u0 solves (E ′). We let P =
{
f̃ (·, u) = f (·) + λu, λ ∈ R, f ∈ C 0,θ

}
,

and define ‖ · ‖P by
‖f̃ ‖P = |λ|+ ‖f ‖C 0,θ .

In other words, we perturb (E ′) by perturbing λ1 and f0 in R× C 0,θ.

Claim 1 : (E ′) is not analytically stable (and not even compact). We see
this by picking ϕ 6≡ 0 in the eigenspace associated to λ1. We let (kα)α be
a sequence of positive real numbers s.t. kα → +∞ as α→ +∞. We
define

uα = u0 + kαϕ .

Obviously, the uα’s all solve (E ′). However ‖uα‖L∞ → +∞ as
α→ +∞, and this contradicts the analytic stability of (E ′).
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Claim 2 : We claim that (E ′) is geometrically stable (w.r.t. perturbations
of λ1 and f0 in R× C 0,θ). We prove this by contradiction. Then there
exists ε0 > 0, a sequence (λα)α ∈ R such that λα → λ1 as α→ +∞,
and a sequence (fα)α ∈ C 0,θ such that fα → f0 in C 0,θ as α→ +∞, with
the property that

d ↪→C 2 (S(λα,fα);S(λ1,f0)) ≥ ε0 , (?)

where S(λ,f ) stands for the set of solutions of ∆gu − λu = f (so that
S(λ1,f0) is precisely the set of solutions of (E ′)). In particular, it follows
from (?) that there exists a sequence (uα)α of C 2-functions such that

∆guα − λαuα = fα (Eα)

for all α, and such that dC 2 (uα;S(λ1,f0)) ≥ ε0

2 for all α.Let Eλ1 be the
eigenspace of ∆g associated to λ1. We know Eλ1 is finite dimensional.
We let ϕ1, . . . , ϕk be a L2-orthonormal basis for Eλ1 , and let vα and ϕα
be given by

vα = uα −
k∑

i=1

λiαϕi , ϕα =
k∑

i=1

λiαϕi .

We choose the λiα’s such that vα ∈ E
⊥L2

λ1
(namely λiα =

∫
uαϕi ). We

claim that
lim

α→+∞
(λα − λ1)ϕα = 0 in C 0,θ. (P)
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We prove (P). Since (E ′) has a solution u0 6≡ 0, integrating (E ′) against

ϕ ∈ Eλ1 there holds that f0 ∈ E
⊥L2

λ1
. Then, by (Eα),∫

fαϕi =

∫
(∆guα − λαuα)ϕi

=

∫
uα (∆gϕi − λαϕi )

= (λ1 − λα)

∫
uαϕi

= (λ1 − λα)λiα ,

and since fα → f0 in C 0,θ, and f0 ∈ E
⊥L2

λ1
, we get that (λ1 − λα)λiα → 0,

and thus that (λα − λ1)ϕα → 0 smoothly. This proves (P).

Now that we have (P), we let λ2 > λ1 be the second eigenvalue for ∆g .
By the variational characterisation of λ2,

λ2 ≤
∫
|∇vα|2∫
|vα − vα|2

(I )

for all α, where vα = uα − ϕα is as above, and vα is the average of vα.
The point here is that vα − vα is L2-orthogonal both to the constants
and to Eλ1 .
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Since functions in Eλ1 has zero average, we get from the definition of vα
that vα = uα. Then, by (Eα), vα = uα = O(1). Still by (Eα) there holds
that

∆gvα − λαvα = fα + (λα − λ1)ϕα (E ′α)

for all α. Then, by (I ) and (E ′α), using that vα = O(1) and that∫
(vα − vα) = 0, we get that∫

v2
α =

∫
vα(vα − vα) + O(1)

=

∫
(vα − vα)2 + O(1)

≤ 1

λ2

∫
|∇vα|2 + O(1)

=
λα
λ2

∫
v2
α +

1

λ2

∫
fαvα +

λα − λ1

λ2

∫
ϕαvα + O(1)

≤ λα
λ2

∫
v2
α + O (‖vα‖L2 ) + O(1)

for all α. Since λα → λ1 and λ1 < λ2, it follows that ‖vα‖L2 = O(1).
Then, by (E ′α), and standard elliptic theory, since (λα − λ1)ϕα → 0
smoothly by (P), we get that the vα’s are bounded in H1 and that, up to
a subsequence, vα → v in C 2, where v solves (E ′).
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Now, at this point, we let w = v − u0, and

wα = u0 + w + ϕα .

There holds that w ∈ Eλ1 since u0 and v both solve (E ′). Since vα → v
in C 2, and vα = uα − ϕα, we get that uα − ϕα → u0 + w in C 2, and
thus that

‖uα − wα‖C 2 → 0 (??)

as α→ +∞. There holds that

∆gwα − λ1wα = f0 (? ? ?)

for all α, since w , ϕα ∈ Eλ1 and u0 solve (E ′). Therefore, by (??) and
(? ? ?),

dC 2 (uα;S(λ1,f0))→ 0

as α→ +∞, and this contradicts the (?) contradiction assumption that
dC 2 (uα;S(λ1,f0)) ≥ ε0

2 . This ends the proof of Claim 2.

By Claims 1 and 2, (E ′) is geometrically stable but not analytically
stable. Q.E.D.
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I.4) The subcritical world :

Let (M, g) smooth compact, ∂M = ∅, n ≥ 3, and consider our nonlinear
model equation in the subcritical setting. Namely,

∆gu + hu = up−1 , (Eh)

u ≥ 0, p ∈ (2, 2?). When h is such that ∆g + h is coercive, (Eh)
possesses a nontrivial (minimal) solution. Conversely, if (Eh) has a
nontrivial solution, then ∆g + h is coercive.

We perturb (Eh) with respect to h, e.g. in Hölder spaces C 0,θ, θ ∈ (0, 1),
and say for short that (Eh) is analytically stable if for any sequences
(hα)α in C 0,θ, and (uα)α in C 2, satisfying that ∆guα + hαuα = up−1

α for all α,
uα ≥ 0 in M for all α,
hα → h in C 0,θ as α→ +∞ ,

(Eα)

there holds that, up to a subsequence, uα → u in C 2 for some solution u
of (Eh). This is the analytic stability notion we defined above, for
nonnegative solutions, a set P of f̃ given by f̃ (·, u) = up−1 − h̃(·)u, with
h̃ ∈ C 0,θ, and ‖f̃ ‖P = ‖h̃‖C 0,θ . Then :
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Theorem : (Subcritical stability, Gidas-Spruck, 81)

For any closed manifold (M, g), n ≥ 3, and any h ∈ C 0,θ such that
∆g + h is coercive, (Eh) is analytically stable.

Proof (Baby blow-up theory) : By contradiction, there exist (hα)α and
(uα)α s.t.

∆guα + hαuα = up−1
α (Ehα)

in M for all α, the hα’s converge, and ‖uα‖L∞ → +∞. Let xα be s.t.

uα(xα) = maxM uα. Let µα = ‖uα‖−(p−2)/2
L∞ . Then µα → 0. Define

ũα(x) = µ
2

p−2
α uα

(
expxα(µαx)

)
,

where x ∈ Rn. By construction, ũα(0) = 1 and 0 ≤ ũα ≤ 1 for all α.
Then

∆g̃α ũα + µ2
αh̃αũα = ũp−1

α , (Ẽhα)

where g̃α(x) =
(
exp?xα g

)
(µαx), and h̃α(x) = hα

(
expxα(µαx)

)
. There

holds g̃α → δ in C 2
loc(Rn). Since ‖ũα‖L∞ ≤ 1, standard elliptic theory ⇒

the ũα’s converge in C 2
loc(Rn). Let ũ be their limit. Then ∆ũ = ũp−1. By

construction ũ(0) = 1. And we get a contradiction with the Liouville
theorem of Gidas and Spruck : the equation ∆u = up−1 doesn’t have
nonnegative nontrivial solutions in Rn when p < 2?. Q.E.D.
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I.5) More precise definitions are needed in the critical world :

Let (M, g) closed, n ≥ 3. For k ∈ N, and θ ∈ [0, 1], we adopt the
convention that C k,0 = C k . Given h ∈ C k,θ, we consider our model
equation in the critical case

∆gu + hu = u2?−1 , (Eh)

u ≥ 0, and we plan to perturb (Eh) with respect to h in C k,θ (as in the
subcritical case).

We adopt here the more refined following terminology by splitting
analytic stability into three notions of analytic stability involving energy.
We define :

- C k,θ-analytic Λ-stability,
- C k,θ-analytic stability,
- C k,θ-bounded stability,

by playing with the energy E (u) =
∫
M
|u|2?dvg which, for solutions u of

equations like (Eh), turns out to be equivalent to ‖u‖2
H1 .

As in the subcritical case, the existence of a nontrivial solution u ≥ 0 to
(Eh) implies that ∆g + h is coercive (a natural assumption we will face
several time in the forthcoming slides).
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Definition : (Analytic stability in the critical case)

Let Λ > 0. Equation (Eh) is C k,θ-analytically Λ-stable if for any
sequence (hα)α in C k,θ such that hα → h in C k,θ as α→ +∞, and any
sequence (uα)α, uα ≥ 0, such that

∆guα + hαuα = u2?−1
α (Ehα)

in M for all α, satisfying that
∫
M
u2?

α dvg ≤ Λ for all α, there holds that,
up to a subsequence, uα → u in C 2 as α→ +∞ for some solution u of
(Eh). Equation (Eh) is C k,θ-anaytically stable if it is C k,θ-analytically
Λ-stable for all Λ > 0. Equation (Eh) is C k,θ-bounded and stable if it is
C k,θ-analytically ∞-stable.

This definition has a natural companion dealing with compactness.

Definition : (Compactness)

Let Λ > 0. Equation (Eh) is Λ-compact if any sequence (uα)α, uα ≥ 0,
of solutions of (Eh) satisfying that

∫
M
u2?

α dvg ≤ Λ for all α, has a
subsequence which converges in C 2 to a solution of (Eh). Equation (Eh)
is compact if it is Λ-compact for all Λ > 0. Equation (Eh) is bounded
and compact if it is ∞-compact.
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Rk1 : The analytic stability notions are ordered (bounded stability ⇒
analytic stability ⇒ analytic Λ-stability for all Λ > 0) and the more we
increase k , the less we actually demand (C k′,θ-stability ⇒ C k,θ-stability
if k ′ ≤ k).

Rk2 : We have that stability ⇒ compactness (C k,θ-bounded stability ⇒
bounded compactness, C k,θ-analytic stability ⇒ compacntess,
C k,θ-analytic Λ-stability ⇒ Λ-compactness for all Λ > 0, for all k and θ).

The difference between stability and compactness turns out be precisely
the notion of geometric stability that we discussed in I.3, and we have
that Analytic stability = Geometric stability + Compactness.

Proposition : (Analyt.Stab. = Geom.Stab. + Cptness)

Let k ∈ N, θ ∈ [0, 1], and Λ > 0. Equation (Eh) is C k,θ-analytically
Λ-stable if and only if

∀ε > 0,∃δ > 0 s.t. ∀h̃ ∈ C k,θ, ‖h̃ − h‖C k,θ ⇒ d ↪→C 2

(
SΛ
h̃

;SΛ
h

)
< ε (GS)

and (Eh) is Λ-compact, where SΛ
h̃

is the set of the solutions u of (Eh̃)
which satisfy that E (u) ≤ Λ.
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Proof of the Proposition : The implication “Analyt.Stab. ⇒ Geom.Stab.
+ Cptness” is obvious. Conversely, we assume (GS) and that (Eh) is
Λ-compact. Let (hα)α be a sequence in C k,θ such that hα → h in C k,θ.
Let also (uα)α be such that the uα’s solve (Ehα) and satisfy that
E (uα) ≤ Λ for all α. By (GS) there exists a sequence (vα)α in SΛ

h such
that ‖vα − uα‖C 2 → 0 as α→ +∞. By the Λ-compactness of (Eh), since
the vα’s are all in SΛ

h , we also have that there exists v ∈ SΛ
h such that, up

to a subsequence, vα → v in C 2 as α→ +∞. Then we clearly get that,
up to a subsequence, uα → v in C 2 as α→ +∞, and this proves the
C k,θ-analytic Λ-stability of (Eh). Q.E.D.

Anticipating on what we are going to discuss in Part II, the following
proposition holds true.

Proposition : (Compactness 6⇒ Analytic Stability)

There are equations like (Eh) which are compact but unstable.

There are sophisticated examples of such a fact, but also very easy
examples like the Yamabe equation in the projective space Pn(R) when
n ≥ 6. As proved in I.4, the situation described in the proposition does
not occur in the subcritical case of (Eh).
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Thank you for your attention !
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