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Abstract. We discuss fourth order nonlinear wave equations in Euclidean

space Rn, n arbitrary. Given m > 0, the equations we consider write as

∂2u

∂t2
+ ∆2u + mu = f(u) ,

where f(u) is a nonlinear term. We investigate well-posedness, blow-up in

finite time, long time existence, and the existence of uniform bounds for global
solutions of our equations. The text is intended to serve as basic notes and a

possible source for an introductory graduate course on the subject.
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There has been an increasing activity in recent years on models involving non-
linear fourth-order partial differential equations. The very interesting book [49] by
Peletier and Troy presents several such models which we can find in the physics
literature. Fourth order equations have also been subject to an increasing activity
in conformal geometry through the analysis of the Paneitz and Branson-Paneitz
operators. We investigate in this paper fourth order wave equations in Euclidean
space Rn which we write into the form

∂2u

∂t2
+ ∆2u+mu = f(u) , (0.1)

where m > 0 is a positive real number, ∆ = −div∇ is the Laplace-Beltrami oper-
ator, and f ∈ C0(R,R) is a continuous function such that f(0) = 0. The model
case for (0.1) is given by the pure power nonlinearity f(x) = λ|x|p−1x where λ ∈ R,
λ 6= 0, and p > 1. At a first glance, (0.1) is a formal fourth-order extension of
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the classical Klein-Gordon equation. However it also inherits a Schrödinger struc-
ture which turns out to be of great help. Equations like (0.1) are also referred
to as Bretherton’s type equations or the beam equation. The original Bretherton
equation, written down for n = 1 by Bretherton [6], arised in the study of weak
interactions of dispersive waves. A similar equation for n = 2 was proposed in
Love [43] for the motion of a clamped plate. The equation was discussed in Levine
[38]. Recent developments in arbitrary dimension were established by Levandosky
[35, 36], Levandosky and Strauss [37], Pausader [46], and Pausader and Strauss
[47]. We also refer to Berger and Milewski [3], Berloff and Howard [4], Holm and
Lynch [23], Lazer and McKenna [32], Lin [40], and McKenna and Walter [44, 45]
for closely related references.

We address several questions in this paper such as well-posedness, blow-up in
finite time, long time existence, and the existence of uniform bounds for global
solutions of (0.1). As is well-known in control theory, the plate equation ∂2

t u +
∆2u = 0 has a Schrödinger structure because of the decomposition ∂2

t + ∆2 =
(∂t + i∆)(∂t − i∆). Possible references in control theory, where the question of
the plate equation is addressed, are Burq [7], Fu, Zhang, and Zuazua [15], Haraux
[22], Jaffard [24], Lebeau [33, 34], Lions [41], Zhang [66], and Zuaza [67]. As is
easily checked, (0.1) inherits the same structure. We exploit this structure through
Strichartz estimates for the Schrödinger equation in Sections 1, 2, and 5 of the
paper. The local theory for energy-subcritical Schrödinger equations was developed
by Ginibre and Velo [18], and Kato [26]. A large and important part of the local
theory for energy-critical Schrödinger equations was later on developed by Cazenave
and Weissler [11, 12]. We transpose and adapt several of their arguments to (0.1) in
various places of the paper. Hyperbolic tools developed for Klein-Gordon equations,
in particular by Cazenave [8], are used instead in Sections 3 and 4. As a remark,
uniform bounds like the ones we get in Section 5 were originally proved in [8] for
Klein-Gordon equations. We proceed here with a slightly different approach using
the Schrödinger structure of the equation. Stability, following the approach in
Struwe [60], is proved in Section 8.

1. Local Existence

We are concerned in this section with proving local existence of strong solutions
of (0.1) with given Cauchy data. We assume in what follows that f ∈ C0(R,R)
satisfies that f(0) = 0 and that there exists C > 0 such that

|f(y)− f(x)| ≤ C
(
1 + |x|p−1 + |y|p−1

)
|y − x| (1.1)

for all x, y ∈ R, where p > 1 is arbitrary if 1 ≤ n ≤ 4, 1 < p ≤ 2] − 1 if n ≥ 5, and
2] = 2n/(n− 4). Let H2 = H2,2(Rn) be the Sobolev space of functions in L2 with
two derivatives in L2, and let ‖ · ‖H2 be the norm on H2 given by

‖u‖2H2 =
∫

Rn

(
(∆u)2 +mu2

)
dx . (1.2)

The exponent 2] is the critical Sobolev exponent for the embedding of H2 into
Lebesgue spaces. For f as in (1.1), and for (u, v) ∈ H2 × L2, we define the total
energy E(u, v) and the kinetic energy E0(u, v) by

E0(u, v) =
1
2
(
‖u‖2H2 + ‖v‖2L2

)
and E(u, v) = E0(u, v)−

∫
Rn
F (u)dx , (1.3)
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where F is the primitive of f given by F (x) =
∫ x
0
f(t)dt for all x ∈ R, and ‖ · ‖Lq is

the Lq-norm in Rn for q ≥ 1. Equation (0.1) is energy-critical when p = 2]− 1 and
n ≥ 5. Given u0 ∈ H2 and u1 ∈ L2, we say that u is a solution of (0.1) in [0, T )
with Cauchy data u0 and u1 if

u ∈ C0([0, T ), H2) ∩ C1([0, T ), L2) ∩ C2([0, T ), H−2) ,

∂2u

∂t2
+ ∆2u+mu = f(u) in C0([0, T ), H−2) , and

u|t=0 = u0 , ut|t=0 = u1 ,

(1.4)

where H−2 stands for the topological dual space of H2. By extension, if I is an
interval such that 0 ∈ I, we say that u solves (0.1) with Cauchy data u0 and u1

if (1.4) holds with I in place of [0, T ). Such solutions are referred to as strong
solutions. We prove in Theorem 1.1 below that we do have local existence for
strong solutions of (0.1) with general nonlinear terms f as in (1.1), including the
energy-critical case. To do this we derive Strichartz type estimates for (0.1) from the
Schrödinger structure of the equation and Strichartz’s estimates for the Schrödinger
equation. In what follows we say that a pair (q, r) is Schrödinger admissible, for
short S-admissible, if

2
q

+
n

r
=
n

2
(1.5)

and r is such that 2 ≤ r ≤ +∞ if n = 1, 2 ≤ r < +∞ if n = 2, and 2 ≤ r ≤ 2?

if n ≥ 3, where 2? = 2n
n−2 . For 2 ≤ q ≤ +∞, we say that a pair (q, r) is beam

admissible, for short B-admissible, if 2 ≤ r ≤ +∞ when n = 1, 2, 3, 2 ≤ r < +∞
when n = 4, and

2
q

+
n

r
=
n− 4

2
(1.6)

with 0 < r < +∞ when n ≥ 5. If (q, r) is S-admissible and 2r < n, then (q, r])
is B-admissible for r] = nr

n−2r . Note that s = r] is the critical Sobolev exponent
for the embedding of H2,r into Ls, where H2,r stands for the Sobolev space of
functions in Lr with two derivatives in Lr. More generally, given s ∈ R and p ≥ 1,
we let Hs,p = Hs,p(Rn) be the usual fractional Sobolev spaces in Rn. Following
standard notations we let also Hs = Hs,2, and for q ≥ 1 we let q′ be the conjugate
of q. Local in time Strichartz type estimates for (0.1) are as follows. Global in time
Strichartz estimates are proved in Pausader [46].

Lemma 1.1. Let I ⊂ R be a bounded interval such that 0 ∈ I, u0 ∈ H2, u1 ∈ L2,
and k ∈ C0(I,H−2) ∩ La′(I, Lb′) for some S-admissible pair (a, b). There exists a
unique u ∈ C0(I,H2) ∩ C1(I, L2) ∩ C2(I,H−2) which solves the linear equation

∂2u

∂t2
+ ∆2u = k (1.7)

in C0(I,H−2) with Cauchy data u|t=0 = u0 and ut|t=0 = u1. Moreover it holds
that u ∈ Lq(I, Lr) for any B-admissible pair (q, r), and that

‖u‖C0(I,H2) + ‖ut‖C0(I,L2) + ‖u‖Lq(I,Lr)

≤ C
(

1 + |I|3/2
)(√

E0(u0, u1) + ‖k‖La′ (I,Lb′ )
)
,

(1.8)

where |I| is the length of I, E0 is as in (1.3), and C ≥ 1 does not depend on u0,
u1, k, and I.
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Proof. We let v solve (1.7) in C0(I,H−4) with Cauchy data v|t=0 = 0 and vt|t=0 = 0.
We let also w solve (1.7) in C0(I,H−2) when k ≡ 0 with Cauchy data w|t=0 = u0

and wt|t=0 = u1. By standard Fourier analysis, v and w exist. Also we obtain
that v ∈ C0(I, L2) ∩ C1(I,H−2) ∩ C2(I,H−4) and w ∈ C0(I,H2) ∩ C1(I, L2) ∩
C2(I,H−2). Let ṽ = −ivt + ∆v and w̃ = −iwt + ∆w. We consider the linear
Schrödinger equation

iut + ∆u = k . (1.9)

As is easily checked, ṽ solves (1.9) in C0(I,H−4) with Cauchy data ṽ|t=0 = 0, and
w̃ solves (1.9) in C0(I,H−2) when k ≡ 0 with Cauchy data w̃|t=0 = −iu1 + ∆u0.
We may then apply the standard Strichartz estimates for the Schrödinger equation,
as stated for instance in Cazenave [9], to ṽ and w̃. We refer also to Keel and Tao
[28]. The Strichartz estimates for ṽ give that ṽ ∈ C0(I, L2) ∩ Lq(I, Ls) for any S-
admissible pair (q, s), and that the LqLs-norm of ṽ is controled by the La

′
Lb
′
-norm

of k. This includes the choice of (q, s) given by q = +∞ and s = 2. In particular,
it follows that v ∈ C0(I,H2)∩C1(I, L2)∩C2(I,H−2), and by considering the real
and imaginary parts of ṽ we also get that for any S-admissible pair (q, s),

‖∆v‖C0(I,L2) + ‖vt‖C0(I,L2) + ‖∆v‖Lq(I,Ls) ≤ C‖k‖La′ (I,Lb′ ) , (1.10)

where C > 0, independent of I, depends only on n, (a, b), and (q, s). As a remark
this implies that v solves (1.7) in C0(I,H−2) and not only in C0(I,H−4). By the
control on the L2-norm of vt in (1.10), and since d

dt‖v‖
2
L2 ≤ 2‖vt‖L2‖v‖L2 , we can

write that

‖v‖C0(I,H2) + ‖vt‖C0(I,L2) + ‖∆v‖Lq(I,Ls)
≤ C (1 + |I|) ‖k‖La′ (I,Lb′ ) ,

(1.11)

where C > 0, independent of I, depends only on n, m, (a, b), and (q, s). Let (q, r)
be a B-admissible pair as in the statement of Lemma 1.1. When n ≤ 4, and since
r ≥ 2, we can write by the Sobolev embedding theorem for H2, and by the inclusion
H2 ⊂ Hs,2 for s ≤ 2 and the Sobolev embedding theorem for fractional Sobolev
spaces when n = 4, that

‖v‖Lq(I,Lr) ≤ C|I|1/q‖v‖C0(I,H2) ≤ C
(

1 + |I|1/2
)
‖v‖C0(I,H2) , (1.12)

where C > 0 depends only on n and (q, r). When n ≥ 5, we let s be given by
s = nr/(n+ 2r). Then (q, s) is S-admissible and s] = r. From Adams and Fournier
[1], and Stein [56] the Ls

]

-norm of a smooth function u with compact support is
controled by a dimensional constant times the Ls-norm of its Laplacian ∆u when
1 ≤ s < n/2. With our choice of s, and by approximation, we may then write that

‖v‖Lq(I,Lr) ≤ C‖∆v‖Lq(I,Ls) , (1.13)

where C > 0 depends only on n and (q, r). Combining (1.11), (1.12), and (1.13) we
get that

‖v‖C0(I,H2) + ‖vt‖C0(I,L2) + ‖v‖Lq(I,Lr) ≤ C
(

1 + |I|3/2
)
‖k‖La′ (I,Lb′ ) , (1.14)
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where C > 0, independent of I, depends only on n, m, (a, b), and (q, r). Similarly,
the Strichartz’s estimates for w̃ give that

‖w‖C0(I,H2) + ‖wt‖C0(I,L2) + ‖w‖Lq(I,Lr)

≤ C
(

1 + |I|3/2
)

(‖u1‖L2 + ‖u0‖L2 + ‖∆u0‖L2)

≤ C
(

1 + |I|3/2
)√

E0(u0, u1) ,

(1.15)

where C ≥ 1, independent of I, depends only on n, m, and (q, r). By (1.14) and
(1.15), letting u = v+w, we get a solution of (1.7) in C0(I,H−2) with Cauchy data
u|t=0 = u0 and ut|t=0 = u1 which satisfies (1.8) for any B-admissible pair (q, r).
Uniqueness of u follows from the remark that if u1 and u2 are two such solutions,
then ũ = u2−u1 solves (1.7) with k = 0 and Cauchy data ũ|t=0 = 0 and ũt|t=0 = 0
so that ũ = 0. This proves Lemma 1.1. �

As a remark, the proof of Lemma 1.1 also gives that ut ∈ Lq(I, Ls) for any
S-admissible pair (q, s). Since 2 ≤ s ≤ 2] for such pairs, and u ∈ C0(I,H2), we
also get from the Sobolev embedding theorem that u ∈ Lq(I, Ls). In Theorem 1.1
below we establish local existence of strong solutions for (0.1). Complementary
corollaries and remarks on the theorem, like well-posedness and a caracterisation
of the explosion in terms of norms and mixed-norms, are discussed in Section 2.

Theorem 1.1. Let f satisfy (1.1), u0 ∈ H2, and u1 ∈ L2. There exists a unique
solution u of (0.1) with Cauchy data u0, u1 defined on a maximal time interval
[0, T ). Furthemore, E(u, ut) = E(u0, u1) for all t ∈ [0, T ), where E is the total
energy as in (1.3), u = u(t), and ut = ut(t).

In order to prove the theorem we let h ∈ C0(R,R) be given by h(u) = f(u)−mu,
and rewrite equation (0.1) into the form

∂2u

∂t2
+ ∆2u = h(u) . (1.16)

As is easily checked, h also satisfies (1.1). We let η : R → R be smooth, with
compact support, and such that η = 1 in [−1, 1]. We define h1 = ηh and h2 =
(1− η)h. Then, by (1.1),

h = h1 + h2 , h1 is Lipschitz , and

|h2(y)− h2(x)| ≤ C
(
|x|p−1 + |y|p−1

)
|y − x|

(1.17)

for all x, y ∈ R, where p is as in (1.1), and C > 0 is independent of x and y. We
also have that h1(0) = h2(0) = 0. For T > 0 we define

HT = C0([0, T ], H2) ∩ C1([0, T ], L2) , H̃T = HT ∩ C2([0, T ], H−2) (1.18)

and, when n ≥ 5, we let also

ĤT = HT ∩ Lqn([0, T ], Lrn) , (1.19)

where (qn, rn) is B-admissible and given by qn = 2(2] − 1), rn = 2](n+ 4)/(n+ 2).
For the reader’s convenience, we divide the proof of Theorem 1.1 into three parts
where we respectively prove existence, conservation of the energy, and uniqueness.
We start with existence. In the process we distinguish the subcritical case from the
critical case because of the different nature of the arguments we use in both cases
which, we refer to the remarks after the proof, provide different informations on
the lifespan and the energy of the solution.
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Proof of Theorem 1.1 – Existence. (i) We assume either that n ≤ 4 or that n ≥ 5
and p < 2] − 1 in (1.1). We prove that for any u0 ∈ H2 and any u1 ∈ L2 there
exists T > 0 such that (0.1) possesses a solution u with Cauchy data u0, u1 defined
on the time interval [0, T ). In order to do this we let h, h1, and h2 be as in (1.17),
and we consider (0.1) when written under the form of equation (1.16). When n ≥ 5
we let (q, r) be the B-admissible pair given by q = qn and r = rn, where qn and rn
are as in (1.19), and for T > 0 we let H be the Banach space given by H = HT
if n ≤ 4, and H = ĤT if n ≥ 5, where HT and ĤT are as in (1.18) and (1.19).
Let u ∈ H be arbitrary. Since h1 is Lipschitz and h1(0) = 0, we can write that
h1(u) ∈ C0(I, L2) while , by (1.17), h2(u) ∈ C0(I, L2n/(n+4)). In particular, both
h1(u) and h2(u) are in C0([0, T ], H−2). We also get that h1(u) ∈ L1([0, T ], L2)
so that h1(u) ∈ La

′
([0, T ], Lb

′
) for (a, b) the S-admissible pair given by a = +∞

and b = 2. Similarly, by the Sobolev embedding theorem for H2 when n ≤ 3, and
by the inclusion H2 ⊂ Hs,2 for s ≤ 2 and the Sobolev embedding theorem for
fractional Sobolev spaces when n = 4, we have that h2(u) ∈ L1([0, T ], L2) when
n ≤ 4. Moreover, we can write that

‖h1(u)‖L1([0,T ],L2) ≤ CT‖u‖C0([0,T ],L2) for all n ,

‖h2(u)‖L1([0,T ],L2) ≤ CT‖u‖pC0([0,T ],H2) when n ≤ 4 ,
(1.20)

where C > 0 depends only on f , n and m. Without loss of generality, we may
assume in what follows that p ≥ (2] − 1)n/(n + 2) in (1.1) when n ≥ 5. Then
2n/(n+ 2) ≤ r/p ≤ 2 for the above choice of r. In particular, assuming that n ≥ 5,
we get that there exists a S-admissible pair (c, d) such that pd′ = r. Since p < 2]−1,
we have that pc′ < q and we let δ > 0 be such that

1
pc′

=
1
q

+
δ

p
. (1.21)

By (1.17) and Hölder’s inequality we then get that h2(u) ∈ Lc′([0, T ], Ld
′
) and that

‖h2(u)‖Lc′ ([0,T ],Ld′ ) ≤ C‖u‖
p

Lpc′ ([0,T ],Lpd′ )
≤ CT δ‖u‖pLq([0,T ],Lr) , (1.22)

where C > 0 depends only on f , m, and n. We fix u0 ∈ H2 and u1 ∈ L2. Also
we let (c, d) be as above when n ≥ 5, and let (c, d) = (+∞, 2) when n ≤ 4. For
u ∈ H we consider the linear equation (1.7) with k = h(u) and Cauchy data u0,
u1. The solution v = χ(u) of this linear problem writes as the sum of the solution
of (1.7) with k = 0 and Cauchy data (u0, u1), the solution of (1.7) with k = h1(u)
and Cauchy data (0, 0), and the solution of (1.7) with k = h2(u) and Cauchy data
(0, 0). By the linear theory in Lemma 1.1, by (1.20), and by (1.22), we can write
that v = χ(u) belongs to H and that

‖v‖H ≤ CT
(√

E0(u0, u1) + ‖h1(u)‖L1([0,T ],L2) + ‖h2(u)‖Lc′ ([0,T ],Ld′ )

)
≤ CT

(√
E0(u0, u1) + T‖u‖H + T δ‖u‖pH

)
,

(1.23)

where δ > 0 equals 1 if n ≤ 4, and CT = C
(
1 + T 3/2

)
for some C > 0 depending

only on f , n, and m. In particular, we defined a map χ : H → H and by (1.23),
we see that for any M > 2C

√
E0(u0, u1), there exists T > 0 sufficiently small

depending only on f , n, M , E0(u0, u1), and m, such that χ preserves the close ball
B′0(M) of center 0 and radius M in H, where C > 0 is as in (1.23). For instance,
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by noting that δ ≤ 1, we get that χ : B′0(M)→ B′0(M) for T ∈ (0, 1] such that

T ≤

(
M − 2C

√
E0(u0, u1)

2C(M +Mp)

)1/δ

.

By (1.17) there exists C > 0 depending only on f , m, and n such that
‖h2(v)− h2(u)‖Lc′ ([0,T ],Ld′ )

≤ C
(
‖u‖p−1

Lpc′ ([0,T ],Lpd′ )
+ ‖v‖p−1

Lpc′ ([0,T ],Lpd′ )

)
‖v − u‖Lpc′ ([0,T ],Lpd′ )

(1.24)

for all u, v ∈ H. By (1.24), Hölder’s inequality, and the linear theory developed in
Lemma 1.1, we can then write that for u, v ∈ B′0(M),

‖χ(v)− χ(u)‖H

≤ C
(
‖h1(v)− h1(u)‖L1([0,T ],L2) + ‖h2(v)− h2(u)‖Lc′ ([0,T ],Ld′ )

)
≤ C

(
T‖v − u‖H

+ T δ
(
‖u‖p−1

Lq([0,T ],Lr) + ‖v‖p−1
Lq([0,T ],Lr)

)
‖v − u‖Lq([0,T ],Lr)

)
≤ C

(
T + 2T δMp−1

)
‖v − u‖H

(1.25)

where δ > 0 is as in (1.21) if n ≥ 5, δ = 1 if n ≤ 4, and C > 0 depends only on
f , n, and m. In particular, for M > 2C

√
E0(u0, u1) and T > 0 sufficiently small

depending only on f , n, m, M , and E0(u0, u1), the map χ : B′0(M)→ B′0(M) acts
as a contraction. By the Banach fixed point theorem we then get that χ has a fixed
point in H. This proves the above claim that when n ≤ 4, or when n ≥ 5 and
p < 2] − 1 in (1.1), then, for any u0 ∈ H2 and any u1 ∈ L2, there exists T > 0
such that (0.1) possesses a solution u with Cauchy data u0, u1 defined on the time
interval [0, T ).

(ii) We assume that n ≥ 5 and that p = 2] − 1 in (1.1). We prove that for any
u0 ∈ H2 and any u1 ∈ L2 there exists T > 0 such that (0.1) possesses a solution u
with Cauchy data u0, u1 defined on the time interval [0, T ). As above we consider
(0.1) when written under the form of equation (1.16). We let (q, r) and (a, b) be
the B-admissible and S-admissible pairs given by q = qn and r = rn, where qn, rn
are as in (1.19), and by a = 2 and b = 2n/(n− 2). In particular, r = b′(2]− 1). For
T > 0, we let H be the Banach space H = ĤT , where ĤT is as in (1.19). For u ∈ H,
as in (i) above, we easily get that h1(u) ∈ L1([0, T ], L2), h2(u) ∈ La′([0, T ], Lb

′
),

and that
‖h1(u)‖L1([0,T ],L2) ≤ CT‖u‖C0([0,T ],L2) ,

‖h2(u)‖La′ ([0,T ],Lb′ ) ≤ C‖u‖
p

Lpa′ ([0,T ],Lpb′ )
≤ C‖u‖pLq([0,T ],Lr) ,

(1.26)

where p = 2] − 1, and C > 0 depends only on f , n and m. Let U be the solution
given by Lemma 1.1 of the linear equation (1.7) with k = 0 and Cauchy data
U|t=0 = u0, Ut|t=0 = u1. In particular,

∂2U
∂t2

+ ∆2U = 0 (1.27)

in C0(R, H−2). For u ∈ H, we let also v = χ(u) be the solution of (1.7) with
k = h(u) and Cauchy data u0, u1. Then v writes as the sum of U , the solution
of (1.7) with k = h1(u) and Cauchy data (0, 0), and the solution of (1.7) with
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k = h2(u) and Cauchy data (0, 0). By the linear theory in Lemma 1.1 we get that
χ : H → H, and when taking into consideration the estimates (1.26) we can write
that

‖v‖Lq([0,T ],Lr) ≤ ‖U‖Lq([0,T ],Lr) + CT

(
T‖u‖H + ‖u‖pLq([0,T ],Lr)

)
(1.28)

and that

‖v‖H ≤ CT
(√

E0(u0, u1) + T‖u‖H + ‖u‖pLq([0,T ],Lr)

)
(1.29)

where p = 2] − 1, CT = C(1 + T 3/2), and C > 0 depends only f , n, and m. Given
δ > 0 arbitrary, we let Tδ ∈ (0, 1) be such that ‖U‖Lq([0,T ],Lr) ≤ δ for all T ∈ (0, Tδ),
and for s > 0 and M > 0 we define the closed set Y sT,M ⊂ H by

Y sT,M =
{
u ∈ H s.t. ‖u‖Lq([0,T ],Lr) ≤ s and ‖u‖H ≤M

}
. (1.30)

By (1.28) and (1.29) we easily get that for δ, s > 0 sufficiently small, and M > 0
sufficiently large, there exists T ∈ (0, Tδ) such that χ preserves Y sT,M . For instance,
by choosing M > 2C

√
E0(u0, u1) and δ, s > 0 sufficiently small such that

2Csp ≤ s/4 , 2Csp + s/4 < M − 2C
√
E0(u0, u1) , and δ ≤ s/2 , (1.31)

we get that χ : Y sT,M → Y sT,M if T ∈ (0, Tδ] is such that 2CTM ≤ s/4. Inde-
pendently, by an inequality like (1.24) with (a, b) in place of (c, d), by Hölder’s
inequality, and the linear theory developed in Lemma 1.1, we can write that for
u, v ∈ Y sT,M ,

‖χ(v)− χ(u)‖H

≤ C
(
‖h1(v)− h1(u)‖L1([0,T ],L2) + ‖h2(v)− h2(u)‖La′ ([0,T ],Lb′ )

)
≤ C

(
T‖v − u‖H +

(
‖u‖p−1

Lq([0,T ],Lr) + ‖v‖p−1
Lq([0,T ],Lr)

)
‖v − u‖Lq([0,T ],Lr)

)
≤ C

(
T + 2sp−1

)
‖v − u‖H ,

(1.32)

where C > 0 depends only on f , n, and m. In particular, for s, T > 0 sufficiently
small, the map χ : Y sT,M → Y sT,M is a contraction. By the Banach fixed point
theorem we then get that χ has a fixed point in H. This proves the above claim
that when n ≥ 5 and p = 2] − 1 in (1.1), then, for any u0 ∈ H2 and any u1 ∈ L2,
there exists T > 0 such that (0.1) possesses a solution u with Cauchy data u0, u1

defined on the time interval [0, T ). �

As a remark, the above proof provides uniqueness of the solution in H̃T -spaces
when n ≤ 4, as predicted by Theorem 1.1, and in H̃T ∩ Lqn([0, T ], Lrn)-spaces
when n ≥ 5, where H̃T , qn, and rn are as in (1.18) and (1.19). From now on we
let T ? = T ?(u0, u1) stand for the maximal time of existence of the solution of (0.1)
with Cauchy data u0 and u1. Assuming either that n ≤ 4, or that n ≥ 5 and
p < 2] − 1 in (1.1), the time for the contraction in point (i) of the above proof can
be chosen such that it depends only on f , n, m, and E0(u0, u1). It follows that
when n ≤ 4, or when n ≥ 5 and p < 2]−1 in (1.1), then E0(u, ut)→ +∞ as t→ T ?

if T ? < +∞. By taking M = C(1 +
√
E0(u0, u1)), with C � 1, and assuming that

p ≥ (2] − 1)n/(n + 2) in (1.1), we also get that when n ≤ 4, or when n ≥ 5 and
p < 2] − 1 in (1.1), then there exists K = K(f, n,m) ∈ (0, 1), depending only on
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f , n, and m, such that for any u0 ∈ H2 and u1 ∈ L2,

T ? ≥ K(
1 +

√
E0(u0, u1)

) p−1
δ

, (1.33)

where δ = 1 if n ≤ 4 and δ > 0 is as in (1.21) if n ≥ 5. Now let us assume that
n ≥ 5 and p = 2]−1 in (1.1). Then we cannot assert anymore from (ii) in the above
proof that E0(u, ut) → +∞ as t → T ? if T ? < +∞. We prove instead, in Section
2, that ‖u‖Lqn ([0,T ],Lrn ) → +∞ as T → T ?. On the other hand, for an analogue of
(1.33) in the critical case, it follows from point (ii) in the above proof that there
exists δ > 0 small such that for any u0 ∈ H2 and u1 ∈ L2, if ‖U‖Lqn ([0,T ],Lrn ) < δ
for some T ∈ (0, 1), then T ? = T ?(u0, u1) is such that

T ? ≥ δT√
1 + E0(u0, u1)

, (1.34)

where U is the solution of the linear equation (1.27) with Cauchy data u0 and u1.
Independently, it can be noted that in all cases, by the linear theory in Lemma 1.1,
see also the remark after the proof of Lemma 1.1, we do get that u ∈ Lqloc([0, T ?), Lr)
and ut ∈ Laloc([0, T ?), Lb) for all B-admissible pairs (q, r), and all S-admissible pairs
(a, b). Now we prove that the conservation of the energy in Theorem 1.1 holds true.

Proof of Theorem 1.1 – Conservation of the energy. We prove in what follows that
if u ∈ H̃T ∩ Lqn([0, T ], Lrn) solves (0.1) with Cauchy data u0 and u1, where H̃T ,
qn, and rn are as in (1.18) and (1.19), then, for any t ∈ [0, T ], E(u, ut) = E(u0, u1),
where E is the total energy as in (1.3), u = u(t), and ut = ut(t). For this purpose
we consider (0.1) when written under the form of equation (1.16), and let E′0, E′

be like E0 and E in (1.3) when m = 0 and F = H is the primitive of h given
by H(x) =

∫ x
0
h(t)dt for all x ∈ R. The proof of the conservation of the energy

in Theorem 1.1 reduces to proving that E′(u, ut) = E′(u0, u1) in [0, T ] if u ∈ HT
solves (1.16) with Cauchy data u0, u1. For ε > 0 we let Jε = (I+ε∆)−1. Then, see
for instance Cazenave [9], for any s, Jε is a contraction in Hs , Jε ∈ L(Hs, Hs+2)
with a norm of the order of ε−1 when ε > 0 is small, and

‖Jεv − v‖Hs ≤ ε‖∆v‖Hs (1.35)

for all v ∈ Hs+2. In particular, by (1.35), the density of Hs+2 into Hs, and
the contraction property of Jε in Hs, we easily get that Jεv → v in Hs for all
v ∈ Hs as ε → 0. We also have that for any q > 1 and any ε > 0, Jε is a
contraction of Lq and Jεv → v in Lq for all v ∈ Lq as ε → 0. We let u ∈ HT
solve (1.16) with Cauchy data u0, u1, and set uε = Jεu. Then, for any ε > 0,
uε ∈ C0([0, T ], H4) ∩ C1([0, T ], H2) ∩ C2([0, T ], L2), and we also have that uε ∈
Lq([0, T ], Lr) when n ≥ 5, where (q, r) is the B-admissible pair given by q = 2(2]−1)
and r = 2](n+ 4)/(n+ 2). Moreover, uε solves the equation

∂2uε
∂t2

+ ∆2uε = Jεh(u) (1.36)

with Cauchy data Jεu0 and Jεu1. We let uε,t be the time derivative of uε. As is
easily checked, t→ E′0 (uε(t), uε,t(t)) is C1, and by (1.36) we can write that

E′0 (uε(t2), uε,t(t2))− E′0 (uε(t1), uε,t(t1)) =
∫ t2

t1

∫
Rn
Jεh(u)Jεutdxdt (1.37)
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for all t1, t2 ∈ (0, T ). Since Jεv → v in H2 for v ∈ H2, we also get that for any t,

E′0 (uε(t), uε,t(t))→ E′0 (u(t), ut(t)) (1.38)

as ε→ 0. Following arguments in Cazenave [9] we can write that for any 1 < a, b <
+∞, and any v ∈ La([0, T ], Lb),

Jεv → v in La([0, T ], Lb) (1.39)

as ε→ 0. Similarly, we also get that for any b > 1, and any v ∈ C0([0, T ], Lb),

Jεv → v in C0([0, T ], Lb) (1.40)

as ε→ 0. By the Strichartz’s estimates of the linear theory in Lemma 1.1, see the
remark after Lemma 1.1, and since (2, 2?) for 2? = 2n/(n − 2) is a S-admissible
pair when n ≥ 3, we have that ut ∈ L2([0, T ], L2?) when n ≥ 3. Let h1 = ηh, and
h2 = (1 − η)h be as in (1.17). We clearly have that h1(u) ∈ C0([0, T ], L2), that
h2(u) ∈ C0([0, T ], L2) when n ≤ 4, and that h2(u) ∈ Lq([0, T ], Ls) when n ≥ 5,
where s is such that (2] − 1)s = r for q and r as above. By (1.39) and (1.40) we
can write that Jεh1(u) → h1(u) in C0([0, T ], L2) as ε → 0, Jεh2(u) → h2(u) in
C0([0, T ], L2) as ε → 0 when n ≤ 4, and that Jεh2(u) → h2(u) in Lq([0, T ], Ls) as
ε → 0 when n ≥ 5. We also have that Jεut → ut in C0([0, T ], L2) as ε → 0, and
that Jεut → ut in L2([0, T ], L2?) as ε → 0 when n ≥ 3. It follows that for any
t1, t2 ∈ (0, T ),∫ t2

t1

∫
Rn
Jεh1(u)Jεutdxdt→

∫ t2

t1

∫
Rn
h1(u)utdxdt , and∫ t2

t1

∫
Rn
Jεh2(u)Jεutdxdt→

∫ t2

t1

∫
Rn
h2(u)utdxdt

(1.41)

as ε→ 0. When n ≥ 5, and since q ≥ 2, we can write that h2(u) ∈ L2([0, T ], Ls). By
noting that s = 2n

n+2 is the conjugate exponent of 2?, and that ut ∈ L2([0, T ], L2?),
it follows that h2(u)ut ∈ L1([0, T ], L1). By smoothing u with respect to the t-
variable, since u ∈ C0([0, T ], H2)∩C1([0, T ], L2) and u ∈ Lq([0, T ], Lr), we can also
prove that∫

Rn
Hi (u(t2)) dx−

∫
Rn
Hi (u(t1)) dx =

∫ t2

t1

∫
Rn
hi(u)utdxdt (1.42)

for all t1, t2 ∈ (0, T ), and for i = 1, 2, where, in this equation, Hi(x) =
∫ x
0
hi(t)dt

for x ∈ R. Combining (1.37), (1.38), (1.41), and (1.42), we get that

E′ (u(t2), ut(t2)) = E′ (u(t1), ut(t1)) (1.43)

for all t1, t2 ∈ (0, T ). Since t→ E′ (u(t), ut(t)) is continuous, it follows from (1.43)
that E′(u, ut) = E′(u0, u1) in [0, T ]. As already mentioned, this ends the proof of
the conservation of the energy in Theorem 1.1. �

At this stage, in order to end the proof of Theorem 1.1, it remains to prove
unconditional uniqueness of the solution, namely uniqueness in H̃T -spaces and not
only in H̃T ∩ Lqn([0, T ], Lrn)-spaces. The argument we use below was developed
by Cazenave [9] for the Schrödinger equation. Related arguments can be found
in Colliander, Keel, Staffilani, Takaoka, and Tao [13], Furioli and Terraneo [16],
Furioli, Planchon, and Terraneo [17], and Kato [27]. We refer also to Tao and
Visan [64].
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Proof of Theorem 1.1 – Unconditional Uniqueness. Let f satisfy (1.1), u0 ∈ H2,
and u1 ∈ L2. We prove that if u, v are two solutions of (0.1) in H̃T for some T > 0,
with Cauchy data u0 and u1, where H̃T is as in (1.18), then u = v in [0, T ]. We
may here assume that n ≥ 5 since we already know by point (i) in the existence
part of the proof of Theorem 1.1 that the result holds true when n ≤ 4. In what
follows we say that a pair (a, b) is a beam’s intermediate pair if a ≥ 2 and

2
a

+
n

b
=
n− 2

2
. (1.44)

Let T ∈ (0, 1], k ∈ C0([0, T ], H−2) ∩ La′([0, T ], Lb
′
) for some beam’s intermediate

pair (a, b), and u ∈ C0([0, T ], H2) ∩ C1([0, T ], L2) ∩ C2([0, T ], H−2) such that it
solves the linear equation (1.7) in C0([0, T ], H−2) with Cauchy data u(0) = 0 and
ut(0) = 0. Then

‖u‖L∞([0,T ],H1) + ‖u‖
L2([0,T ],L2] )

≤ C‖k‖La′ ([0,T ],Lb′ ) (1.45)

for some positive constant C > 0 which does not depend on k and T . Such interme-
diate Strichartz type estimates follow from the Schrödinger structure of (0.1) and
Strichartz estimates in Besov spaces for the Schrödinger equation. We may use, for
instance, that

‖v‖L∞([0,T ],B−1
2,2) ≤ C‖k‖La′ ([0,T ],B−1

c′,2)
, and

‖v‖L2([0,T ],B−1
2?,2)

≤ C‖k‖La′ ([0,T ],B−1
c′,2)

,
(1.46)

where C > 0 does not depend on k and T , c is such that the pair (a, c) is S-
admissible, and the Bsq1,q2 spaces are the standard Besov spaces. A possible refer-
ence for such estimates is Cazenave [9]. In particular, it follows from (1.45) that

‖u‖
L2([0,T ],L2] )

+ ‖u‖L∞([0,T ],L2) ≤ C‖k‖La′ ([0,T ],Lb′ ) , (1.47)

where C > 0 does not depend on k and T . We let h, h1, and h2 be as in (1.17),
and we consider (0.1) when written under the form of equation (1.16). We let
also T > 0 and u, v ∈ HT be two solutions of (1.16) satisfying the same Cauchy
data u0 and u1, where HT is as in (1.18). We set w = v − u. Then w ∈ HT
and w solves the equation (3.9) with Cauchy data w(0) = 0 and wt(0) = 0, where
k = h(v) − h(u). For M > 0, we let E = EM be the subset of [0, T ] × Rn defined
by EM = {|u|+ |v| ≤M}. We set k1 = h1(v) − h1(u) + χE (h2(v)− h2(u)), and
k2 = χEc (h2(v)− h2(u)), where χE and χEc are the characteristic functions of E
and Ec. As is easily checked, k = k1 + k2, and for t ∈ (0, T ), we can write by
Hölder’s inequality and (1.17) that k1 ∈ L1([0, t], L2), k2 ∈ L2([0, t], L2n/(n+4)),
and

‖k1‖L1([0,t],L2) ≤ C1(1 +Mp−2)t‖w‖L∞([0,t],L2) ,

‖k2‖L2([0,t],L2n/(n+4)) ≤ C2‖Ψ‖p−2

L∞([0,T ],L2] )
‖w‖

L2([0,t],L2] )
,

(1.48)

where Ψ = χEc (|u|+ |v|), and C1, C2 > 0 do not depend on M and t. The pair
(2, 2n

n+4 ) is the conjugate pair of (2, 2]) which satisfies the intermediate condition
(1.44). We assume in what follows that t ≤ 1. For i = 1, 2 we let wi be the solution
of the linear equation (1.7) with k = ki and Cauchy data wi(0) = 0, wit(0) = 0. We
have w2 = w − w1 and it follows from Lemma 1.1 that the wi’s are all in HT . By
the Strichartz estimates in Lemma 1.1 we can write that

‖w1‖L∞([0,t],H2) ≤ CM t‖w‖L∞([0,t],L2) , (1.49)
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and by the intermediate Strichartz estimates (1.47) we can write that

‖w2‖L∞([0,t],L2) + ‖w2‖
L2([0,t],L2] )

≤ C‖Ψ‖p−2

L∞([0,T ],L2] )
‖w‖

L2([0,t],L2] )
, (1.50)

where CM > 0 does not depend on t, and C > 0 does not depend on M and t.
We let M � 1 be sufficiently large such that C‖Ψ‖p−2

L∞([0,T ],L2] )
< 1. By combining

(1.49) and (1.50), we then get that

‖w‖L∞([0,t],L2) ≤ CM t‖w‖L∞([0,t],L2) , (1.51)

where CM > 0 does not depend on t. In particular, by choosing t > 0 sufficiently
small, we get that w = 0 in [0, t]. Iterating the argument it follows that w = 0 in
[0, T ] and this proves unconditional uniqueness. �

Theorem 1.1 easily follows from standard semi-group arguments, as developed
in Cazenave and Haraux [10], when p < 2]/2 in (1.1). When f is assumed to be of
class C1, |f ′(u)| is dominated by |u|p−1, and p < 2]−1 is assumed to be subcritical,
Theorem 1.1 was established by Levandosky [36]. The approach in [36] is based
on the system representation of (0.1) and does not make use of the Schrödinger
structure of the equation. Theorem 1.1 only needs (1.1) and, in particular, allows
p to be critical.

2. Related results and remarks

We prove in this section various results related to the local existence theorem,
Theorem 1.1 of Section 1. A first result which, together with Theorem 1.1 estab-
lishes well-posedness, is as follows.

Proposition 2.1. Let f satisfy (1.1), u0 ∈ H2, u1 ∈ L2, (u0
k)k be a sequence in

H2 converging to u0 in H2 as k → +∞, and (u1
k)k be a sequence in L2 converging

to u1 in L2 as k → +∞. Let T ? = T ?(u0, u1) be the maximal time of existence
of the solution of (0.1) with Cauchy data u0 and u1, and T ?k = T ?(u0

k, u
1
k) be the

maximal time of existence of the solution of (0.1) with Cauchy data u0
k and u1

k.
Then,

T ? ≤ lim inf
k→+∞

T ?k (2.1)

and we also have that for any T < T ?, uk → u in C0([0, T ], H2)∩C1([0, T ], L2) as
k → +∞, where uk is the solution of (0.1) with Cauchy data u0

k and u1
k, and u is

the solution of (0.1) with Cauchy data u0 and u1.

Proof. We assume here that n ≥ 5. The proof works the same, with only slight
changes, when n ≤ 4. With the notations of the proposition, we let U t be the
solution of the homogeneous linear equation (1.27) with Cauchy data U t(t) = u(t),
U tt (t) = ut(t). We let also T < T ? be fixed arbitrary. By the linear theory in
Lemma 1.1 of Section 1 we can write that for any δ > 0, there exists ν > 0 such
that

‖U t‖Lq([t,t+ν],Lr) < δ/2 (2.2)
for all t ∈ [0, T ], where q = qn and r = rn are as in (1.19). For ũ0, ũ

′
0 ∈ H2,

and ũ1, ũ
′
1 ∈ L2, we denote by Ũ and Ũ ′ the solutions of the homegeneous linear

equation (1.27) with Cauchy data ũ0, ũ1, and ũ′0, ũ′1. Also we denote by ũ and ũ′

the solutions of the nonlinear equation (0.1) with Cauchy data ũ0, ũ1, and ũ′0, ũ′1.
We fix ε0 > 0. By coming back to point (ii) in the proof of local existence in Section
1, and by the linear theory in Lemma 1.1, we get that there exists δ > 0 small such
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that if ‖ũ′0− ũ0‖H2 +‖ũ′1− ũ1‖L2 ≤ ε0, ‖Ũ‖Lq([0,T̃ ],Lr) < δ, and ‖Ũ ′‖Lq([0,T̃ ],Lr) < δ

for some T̃ ∈ (0, 1), then ũ, ũ′ ∈ H, ũ and ũ′ solve (0.1) in C0([0, T0], H−2), and

‖ũ′ − ũ‖H < C (‖ũ′0 − ũ0‖H2 + ‖ũ′1 − ũ1‖L2) (2.3)

where C > 0 depends only on n, H = HT0 ∩Lq([0, T0], Lr), HT0 is as in (1.18), and
T0 = δT̃ /

√
1 + E0(ũ0, ũ1). We fix such a δ > 0 and let Λ0 = max[0,T ]E0(u, ut) and

ν̃ = δν/2
√

1 + Λ0, where ν is given by (2.2). We let also t1 < t2 < · · · < tN be such
that t1 = 0, tN = T , |ti+1− ti| < ν̃ for all i = 1, . . . , N , and [0, T ] =

⋃N−1
i=1 [ti, ti+1].

By combining (2.2) and (2.3), thanks also to the linear theory in Lemma 1.1 of
Section 1, we get that if the uk’s of the proposition exist on [ti, ti + ε] for some
ε > 0 and some i = 1, . . . , N , and if it holds that uk(ti) → u(ti) in H2 and
uk,t(ti)→ ut(ti) in L2 as k → +∞, where uk,t stands for the time derivative of uk,
then uk exists in [ti, ti + ν̃] for k � 1, and

‖uk − u‖C0([ti,ti+ν̃],H2) + ‖uk − u‖C1([ti,ti+ν̃],L2) → 0 (2.4)

as k → +∞. Since t1 = 0 we know by assumption that uk(t1) → u(t1) in H2 and
that uk,t(t1)→ ut(t1) in L2 as k → +∞. By (2.4) we can iterate from t1 to tN−1.
This clearly ends the proof of the proposition. �

Proposition 2.2 below is concerned with the explosion of the energy for low
dimensions and in the energy-subcritical case p < 2] − 1 when n ≥ 5. For the
sake of simplicity, an additional condition on f we require in the second part of the
proposition is that there exist µ ∈ (0,m) and C > 0 such that

F (x) ≤ µ

2
x2 + C|x|p+1 (2.5)

for all x ∈ R. Various f satisfy (1.1) and (2.5). Any f satisfying (1.1) and (3.1),
as in Sections 3 to 5, satisfy (1.1) and (2.5). Proposition 2.2 states as follows. As
a remark, we do have that n

4 (p− 1) < p+ 1 as soon as p < 2] − 1.

Proposition 2.2. Let f satisfy (1.1) with p < 2] − 1 when n ≥ 5. Let also
T ? = T ?(u0, u1) be the maximal time of existence of the solution u of (0.1) with
Cauchy data u0 and u1. If T ? < +∞, then ‖u‖H2 → +∞ as t → T ?, and if we
assume (2.5), then it also holds that ‖u‖Lq → +∞ as t → T ? for all q ∈ [2,+∞)
such that q > p− 1 when 1 ≤ n ≤ 4, and all q ∈ [2, 2]] such that q > n

4 (p− 1) when
n ≥ 5.

Proof. Let f satisfy (1.1) . We know from Theorem 1.1 that the total energy E is
conserved, and from the remark following the proof of existence in Section 1 that
if T ? < +∞, then E0(u, ut)→ +∞ as t→ T ?. Taking y = 0 in (1.1) we have that
|F (x)| ≤ C(|x|2 + |x|p+1) for all x. In particular, by the embedding H2 ⊂ Hs,2

for s ≤ 2, and the Sobolev embedding theorem for fractional spaces, we get that
‖u‖H2 → +∞ as t → T ? if T ? < +∞. Now we assume that f also satisfies (2.5).
By (2.5), Hölder’s inequality, conservation of the total energy, and the Sobolev
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embedding theorem, we can write that

‖u‖2H2 ≤ 2E(u0, u1) + 2
∫

Rn
F (u)dx

≤ µ‖u‖22 + C
(

1 + ‖u‖p+1
Lp+1

)
≤ µ

m
‖u‖2H2 + C

(
1 + ‖u‖(p+1)θ

Lq ‖u‖(p+1)(1−θ)
Lq′

)
≤ µ

m
‖u‖2H2 + C

(
1 + ‖u‖(p+1)θ

Lq ‖u‖(p+1)(1−θ)
H2

)
(2.6)

for all t ≥ 0, where 1 ≤ q ≤ p+ 1 ≤ q′, q′ can be chosen arbitrarily large if n ≤ 4,
q′ = 2n/(n− 4) if n ≥ 5,

θ =
1
p+1 −

1
q′

1
q −

1
q′

, (2.7)

and C > 0 does not depend on t. As is easily checked from (2.7), by choosing
q′ � 1 sufficiently large we get that (1−θ)(p+1) < 2 if q > p−1 and 1 ≤ n ≤ 4. In
a similar way, when n ≥ 5, we get that (1− θ)(p+ 1) < 2 if q > n

4 (p− 1). Coming
back to (2.6), since µ < m and ‖u‖H2

2
→ +∞ as t → T ?, we necessarily have that

‖u‖Lq → +∞ as t → T ? if (1 − θ)(p + 1) < 2. This proves that ‖u‖Lq → +∞ as
t→ T ? for all q ∈ [2, p+ 1] such that q > p− 1 when 1 ≤ n ≤ 4, and q > n

4 (p− 1)
when n ≥ 5. By Hölder’s inequality, coming back to (2.6), we can also write that

‖u‖2H2 ≤ 2E(u0, u1) + 2
∫

Rn
F (u)dx

≤ µ‖u‖22 + C
(

1 + ‖u‖p+1
Lp+1

)
≤ µ

m
‖u‖2H2 + C

(
1 + ‖u‖(p+1)θ

L2 ‖u‖(p+1)(1−θ)
Lq

)
≤ µ

m
‖u‖2H2 + C ′

(
1 + ‖u‖(p+1)θ

H2 ‖u‖(p+1)(1−θ)
Lq

)
(2.8)

for all t ≥ 0, where 2 ≤ p+ 1 ≤ q and (p+ 1)θ = 2(q − p− 1)/(q − 2). As is easily
checked, (p + 1)θ < 2, and it follows from (2.8) that ‖u‖Lq → +∞ as t → T ? for
all q ≥ p+ 1. This ends the proof of the proposition. �

A corollary to Proposition 2.2 is as follows. The condition F (x) ≤ Cx2 in
Corollary 2.1 is automatically satisfied if f is Lipschitz, or if there exists C > 0
such that xf(x) ≤ C ′x2 for all x. As a remark, the arguments in Segal [52], see
also Shatah and Struwe [55], can be transposed with basically no changes to (0.1).
In particular, see Section 7, (0.1) possesses a weak solution of finite energy defined
in the whole of R, with Cauchy data u0 ∈ H2 and u1 ∈ L2, as soon as f(0) = 0,
f is locally Lipschitz, xf(x) ≤ 0 for all x, and F (u0) ∈ L1. Corollary 2.1 states as
follows.

Corollary 2.1. Let f satisfy (1.1) with p < 2] − 1 when n ≥ 5, and let F be the
primitive of f as in (1.3). Assume there exists C > 0 such that F (x) ≤ Cx2 for all
x. Then, for any u0 ∈ H2 and u1 ∈ L2, the solution u of (0.1) with Cauchy data
u0 and u1 exists for all t ∈ R.

Proof. By reversing time it suffices to prove existence for all t ≥ 0. We fix u0 ∈ H2,
u1 ∈ L2, and let u be the solution of (0.1) with Cauchy data u0, u1. By (3.7) in
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Section 3,

‖u(t)‖2L2 = ‖u(0)‖2L2 + 2
∫ t

0

∫
Rn
u(s)ut(s)dsdx

≤ ‖u(0)‖2L2 + 2
m+ 1
m

∫ t

0

E0 (u(s), ut(s)) ds
(2.9)

for all t ≥ 0. By the conservation of the total energy in Theorem 1.1, and since by
assumption F (x) ≤ Cx2, we then get with (2.9) that

E0 (u(t), ut(t)) = E0(u0, u1)−
∫

Rn
F (u0)dx+

∫
Rn
F (u(t)) dx

≤ E0(u0, u1)−
∫

Rn
F (u0)dx+ C

∫
Rn
u(t)2dx

≤ C1

∫ t

0

E0 (u(s), ut(s)) ds+ C2

(2.10)

for all t ≥ 0, where C1, C2 > 0 are positive constants which do not depend on t. In
particular, by the integral form of Gronwall’s inequality, we get with (2.10) that

E0 (u(t), ut(t)) ≤ C2

(
1 + C1te

C1t
)

(2.11)

for all t ≥ 0, and by (2.11) we get that E0 (u(t), ut(t)) remains bounded on any
time interval [0, T ]. By Theorem 1.1, this implies that u exists on the whole half
line R+, namely for all t ≥ 0. This proves the corollary. �

The model case for the Breteherton equation (0.1) is given by the pure power
nonlinearity f(x) = λ|x|p−1x, p > 1. In that case the equation writes as

∂2u

∂t2
+ ∆2u+mu = λ|u|p−1u , (2.12)

where λ ∈ R\{0}. The equation is defocusing when λ < 0, and focusing when λ > 0.
A straightforward consequence of Corollary 2.1 and of Proposition 2.1 is that the
defocusing nonlinear equation (2.12) is globally well-posed in C0(R, H2)∩C1(R, L2)
for all p > 1 when n ≤ 4, and all p ∈ (1, 2] − 1) when n ≥ 5. The model equation
(2.12) has scaling invariance

u(t, x)→ 1

λ
4
p−1

u(
t

λ2
,
x

λ
) , u0(x)→ 1

λ
4
p−1

u0(
x

λ
) ,

u1(x)→ 1

λ
2(p+1)
p−1

u1(
x

λ
) , and m→ m

λ4
.

(2.13)

In the energy-critical case, where n ≥ 5 and p = 2]−1, the scaling preserves energy.
The following proposition shows that for general energy-critical equations, where
n ≥ 5 and p = 2] − 1 in (1.1), thus including the focusing case in (2.12), blow-up
of mass holds in mixed norms.

Proposition 2.3. Let n ≥ 5 and f satisfy (1.1) with p = 2] − 1. Let u0 ∈ H2,
u1 ∈ L2, and T ? = T ?(u0, u1) be the maximal time of existence of the solution of
(0.1) with Cauchy data u0 and u1. If T ? < +∞, then

lim
T→T?

∫ T

0

‖u‖qnLrndt = +∞ , (2.14)

where qn and rn are given by qn = 2(2] − 1) and rn = 2](n+ 4)/(n+ 2).
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Proof. We prove (2.14) by contradiction. We assume in what follows that T ? < +∞
and that the limit in the left hand side of (2.14) is finite. A preliminary claim in
that case is that we also have that

sup
[0,T?)

E0(u, ut) < +∞ , (2.15)

where E0 is as in (1.3). In order to prove (2.15) we let ε > 0 sufficiently small
to be chosen later on, and let Ij = [tj , tj+1], j = 1, . . . , N , be a family of closed
intervals such that t1 = 0, tj < tj+1 < tj + ε for all j, and tN+1 ≥ T ?. We let also
h, h1 = ηh, and h2 = (1− η)h be as in (1.17), and we consider (0.1) when written
under the form of equation (1.16). We can write that u = Uj + V1,j + V2,j in Ĩj ,
where Uj is the solution of (1.27) with Cauchy data u(tj) and ut(tj) at t = tj , the
Vi,j ’s are the solutions of (1.7) with k = hi(u) and Cauchy data 0 and 0 at t = tj
for i = 1, 2, and Ĩj = Ij when j < N while ĨN = [tN , T ?). By the linear theory
in Lemma 1.1 of Section 1, and by inequlaities like in (1.26), we can write that for
any j,

‖u‖C0(Ĩj ,H2) + ‖ut‖C0(Ĩj ,L2)

≤ C
(√

E0 (u(tj), ut(tj)) + ε‖u‖C0(Ĩj ,H2) +K(2]−1)/qn

)
,

(2.16)

where C > 0 depends only on n, f , and m, and K is the left hand side in (2.14). By
assumption, K < +∞, and by choosing ε > 0 sufficiently small such that Cε < 1,
it follows from (2.16) that (2.15) holds true. Now we let T < T ? sufficiently close
to T ? to be chosen later on, and let UT be the solution of (1.27) with Cauchy data
u(T ) and ut(T ) at t = T , the Vi,T ’s are the solutions of (1.7) with k = hi(u) and
Cauchy data 0 and 0 at t = T for i = 1, 2. By writing that UT = u− V1,T − V2,T ,
by the linear theory in Lemma 1.1 of Section 1, and by (1.26), it holds that

‖UT ‖Lqn ([T,T?],Lrn )

≤ C
(
‖u‖Lqn ([T,T?),Lrn ) + (T ? − T )K ′ + ‖u‖2

]−1
Lqn ([T,T?),Lrn )

)
,

(2.17)

where C > 0 depends only on n, f , and m, and K ′ = sup[0,T?)E0(u, ut) is finite by
(2.15). By (2.17) we then get that

lim
T→T?

‖UT ‖Lqn ([T,T?],Lrn ) = 0 (2.18)

and it follows from (2.18) that for any δ > 0, there exist T < T ? and ε > 0 such that
‖U‖Lqn ([T,T?+ε],Lrn ) < δ. By (1.34) and (2.15) we then get that u can be extended
on an interval like [T, T ? + ε′] for some T < T ? and ε′ > 0. A contradiction with
the definition of T ?. This proves (2.14) and Proposition 2.3. �

A natural question on Theorem 1.1 concerns the existence of a lower bound for
the maximal time T ? of existence of a solution of (0.1) with Cauchy data u0, u1. As
is to be expected, the time of existence for critical equations should depend on the
profile of the initial data and not simply on the energy. In the subcritical case the
situation is easier to handle. We already know, see (1.33) after the proof of existence
in Section 1, that if p < 2]− 1 when n ≥ 5, and p ≥ (2]− 1)n/(n+ 2) which we can
always assume without loss of generality, then there exists K = K(f, n,m) ∈ (0, 1),
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depending only on f , n, and m, such that for any u0 ∈ H2 and u1 ∈ L2,

T ? ≥ K(
1 +

√
E0(u0, u1)

) p−1
δ

, (2.19)

where δ = 1 if n ≤ 4 and δ > 0 is as in (1.21) if n ≥ 5. We point out here that
more information than in (2.19) can be obtained if we assume that p ≤ n

n−4 in
(1.1) when n ≥ 5. More precisely, we claim that if f satisfies (1.1), , where p > 1 is
arbitrary when n ≤ 4 and p ≤ n

n−4 when n ≥ 5, and if f is k0 times differentiable
at 0 and such that f (k)(0) = 0 for all 0 ≤ k ≤ k0 and some k0 ≤ p− 1, then there
exist C > 0 such that

T ? ≥ C

εk0/2
if k0 > 0 and T ? ≥ C| log ε| if k0 = 0 (2.20)

for all ε ∈
(
0, 1

2

)
and all Cauchy data u0 ∈ H2 and u1 ∈ L2 such that E0(u0, u1) < ε,

where T ? is the maximal time of existence of the solution of (0.1) with Cauchy data
u0, u1. We prove (2.20) as follows. By the conservation of the energy in Theorem
1.1, d

dtE0 (u(t), ut(t)) =
∫

Rn f (u(t))ut(t)dx, and it follows from Hölder’s inequality
that if N(t) = E0 (u(t), ut(t))

1/2, then

N(t) ≤ N(0) +
∫ t

0

‖f (u(s)) ‖L2ds (2.21)

for t ≥ 0. By the assumption on f that f (k)(0) = 0 for all 0 ≤ k ≤ k0 and some
k0 ≤ p−1, and by (1.1), we can write that |f(x)| ≤ C

(
|x|k0+1 + |x|p

)
for all x ∈ R,

where C > 0 is independent of x. By the Sobolev embedding theorem we then
get that ‖f (u(t)) ‖L2 ≤ C

(
N(t)k0+1 +N(t)p

)
, where C > 0 is independent of t.

Assuming that N(0) < 1, by continuity of N , we do get that N(t) ≤ 1 for t > 0
small. Let t0 > 0 be the upper bound of the set consisting of the positive t wich
are such that N(s) ≤ 1 for all 0 ≤ s ≤ t. By (2.21), and according to the above
remarks, we can write that

N(t) ≤ N(0) + 2C
∫ t

0

N(s)k0+1ds (2.22)

for all 0 ≤ t ≤ t0, where C > 0 does not depend on t. Let Φ be the function of t in
the right hand side of (2.22). By (2.22), Φ′(t) ≤ 2CΦ(t)k0+1 and N(t) ≤ Φ(t) for
all 0 ≤ t ≤ t0. Assume k0 = 0. Then Φ′(t) ≤ 2CΦ(t), and we get that

Φ(t) ≤ Φ(0)e2Ct ≤
√
εe2Ct (2.23)

since φ(0) = N(0) and E0(u0, u1) < ε. In particular, Φ(t) < 1, and hence N(t) < 1,
if 4Ct < | ln ε|. By the definition of t0, this implies that 4Ct0 ≥ | ln ε|, and since
t0 ≤ T , (2.20) holds true when k0 = 0. When k0 ≥ 1, since Φ′(t) ≤ 2CΦ(t)k0+1,
we get in a smiliar way that 2k0Ct0 ≥ C ′ε−k0/2 when E0(u0, u1) < ε and 2ε < 1,
where C ′ > 0 depends only on k0. This proves (2.20) when k0 ≥ 1. As a remark,
the bound p ≤ n

n−4 is the energy bound which makes that f(u) ∈ L1([0, T ], L2) and
that the material in Cazenave and Haraux [10] can be applied. On the other hand,
no conditions on p are required if n ≤ 4.

Global well-posedness for the energy-critical defocusing wave equation was es-
tablished few years ago. The case of radially-symmetric initial data goes back to
Struwe [58]. The case of arbitrary initial data is due to Grillakis [19, 20], and
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Shatah and Struwe [53, 54]. Related references are Struwe [59], and Shatah and
Struwe [55]. Global well-posedness for the energy-critical Schrödinger equation was
established only very recently. The case of radially-symmetric initial data is due to
Bourgain [5] in dimension n = 3, see also Grillakis [21], and to Tao [62] in arbitrary
dimensions. The case of arbitrary initial data is due to Colliander, Keel, Staffilani,
Takaoka, and Tao [13] in dimension n = 3, Ryckman and Visan [50] in dimension
n = 4, and Visan [65] when the dimension n ≥ 5. A recent very interesting survey
on the subject is Tao [63].

3. Blow-up in finite time

We let f be such that (1.1) holds true. We also assume that there exists ε > 0
such that

xf(x) ≥ (2 + ε)F (x) (3.1)

for all x ∈ R, where F is the primitive of f as in (1.3). Various f satisfy (1.1)
and (3.1). The nonlinearity of the focusing model equation (2.12), given by f(x) =
λ|x|p−1x where λ > 0, satisfies (1.1) and (3.1) when p is as in (1.1). We aim
here in proving blow-up in finite time for solutions of (0.1). As a preliminary
result, following Cazenave [8], we claim that when f satisfies (1.1) and (3.1), then
F+(x) = O(|x|2+ε) as x → 0, and we can write that for any µ < m, there exists
C > 0 such that

F (x) ≤ µ

2
x2 + C|x|p+1 (3.2)

for all x ∈ R, where F+ = max (0, F ). We prove (3.2) as follows. We let h be the
function defined for x 6= 0 by h(x) = |x|−(2+ε)F (x). Then,

h′(x) =
x

|x|4+ε
(xf(x)− (2 + ε)F (x)) (3.3)

for all x 6= 0, and it follows from (3.1) that h is non increasing in (−∞, 0) and non
decreasing in (0,+∞). As an easy consequence we get that F+(x) ≤ C1|x|2+ε for all
x such that |x| ≤ 1, where C1 = max (F+(−1), F+(1)). In particular, the first part
of the above claim holds true. Integrating (1.1), we also get that there exists C > 0
such that |F (x)| ≤ C

(
|x|2 + |x|p+1

)
for all x. It follows that |F (x)| ≤ C2|x|p+1 for

all x such that |x| ≥ 1, where C2 > 0 does not depend on x, and we can write that

F (x) ≤ C
(
|x|2+ε + |x|p+1

)
(3.4)

for all x ∈ R, where C > 0 is given by C = max (C1, C2). As is easily checked, (3.2)
follows from (3.4) and the property that |F (x)| = O(|x|p+1) as |x| → +∞. This
proves the above claim that for any µ < m, there exists C > 0 such that (3.2) holds
true. Now, for u a solution of (0.1) with Cauchy data u0, u1, we let L2 = Lu0,u1 be
the square L2-norm function defined by

L2(t) =
∫

Rn
u2(t)dx (3.5)

and we let also H = Hu0,u1 be the function given by

H(t) = L2(t)− 2(2 + ε)
εm

E(u0, u1) . (3.6)
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An easy claim is that L2, and hence also H, are C2-functions. We have here that

L′2(t) = 2
∫

Rn
u(t)ut(t)dx , and

L′′2(t) = 2〈utt(t), u(t)〉H−2×H2 + 2
∫

Rn
u2
t (t)dx ,

(3.7)

where 〈·, ·〉H−2×H2 is the pairing between H−2 and H2. Moreover, by (3.6), H ′(t) =
L′2(t) and H ′′(t) = L′′2(t) for all t. When H(t) ≥ 0 and H ′(t) > 0 for some t ≥ 0,
or when H(t) > 0 and H ′(t) ≥ 0, we define T ](t) = T ]u0,u1

(t) by

T ](t) = t+
4
ε

√
(4 + ε)L2(t)
εmH(t)

− (4 + ε)L′2(t)
ε2mH(t)

if SH(t) < 0 , and

T ](t) = t+
4L2(t)
εL′2(t)

if SH(t) ≥ 0 ,

(3.8)

where SH(t) = L′2(t)
2

L2(t)H(t) −
4εm
4+ε , L2 = Lu0,u1 is as in (3.5), and H = Hu0,u1 is as in

(3.6). By the conservation of the total energy in Theorem 1.1, and since E(u, v) ≥ 0
if u ≡ 0, we get that E(u0, u1) ≥ 0 if L2(t) = 0 for some t ≥ 0. We also have that
L′2(t) = 0 if L2(t) = 0. In particular, L2(t) > 0 if H(t) ≥ 0 and H ′(t) > 0, or
H(t) > 0 and H ′(t) ≥ 0. By convention, we let SH(t) = +∞ if H(t) = 0. A
solution u of (0.1) is said to blow up in finite time if its maximal time of existence
T ?, also referred to as its lifespan, is finite.

Lemma 3.1. Let f satisfy (1.1) and (3.1), and let u be a solution of (0.1) with
Cauchy data u0, u1. Let H = Hu0,u1 be as in (3.6). Suppose there exists t0 ≥ 0
such that

H(t0) ≥ 0 and H ′(t0) > 0 , or

H(t0) > 0 and H ′(t0) ≥ 0 .
(3.9)

Then u blows up in finite time with a lifespan T ? ≤ T ](t0), where T ] = T ]u0,u1
is

as in (3.8).

Proof. By combining (0.1), (3.1), and the conservation of the total energy in The-
orem 1.1, we get with (3.7) that

H ′′(t) ≥ ε
∫

Rn

(
(∆u)2 +mu2

)
dx+ (4 + ε)

∫
Rn
u2
tdx− 2(2 + ε)E(u0, u1)

≥ εmH(t) + (4 + ε)
∫

Rn
u2
tdx ≥ εmH(t)

(3.10)

for all t. Let t0 ≥ 0 be such that (3.9) holds true. By (3.10), since H ′′(t) ≥ εmH(t)
for all t, we can write that H(t) > 0 for all t > t0. We also have that H ′(t) > 0
for all t > t0. Once again by (3.10), we then get that H ′′(t) ≥ (4 + ε)‖ut‖2L2 for all
t ≥ t0, and we get with (3.7) that

L′2(t)2 ≤ 4‖u‖2L2‖ut‖2L2

≤ 4
4 + ε

L2(t)L′′2(t)
(3.11)

for all t ≥ t0 since L′′2 = H ′′. Let us assume from now on that t0 is such that
H(t0) ≥ 0 and H ′(t0) > 0. We have that L2(t) > 0 for all t ≥ t0. Let K be the
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function given by K(t) = L2(t)−ε/4 for t ≥ t0. Then

K ′′(t) =
ε

4L2(t)2+
ε
4

(
ε+ 4

4
L′2(t)2 − L2(t)L′′2(t)

)
(3.12)

and, by (3.11), we get that K ′′(t) ≤ 0 for all t ≥ t0. In particular, we can write that
K(t) ≤ K(t0) +K ′(t0)(t− t0) for all t ≥ t0, and since we also have that K(t) ≥ 0,
we get that

t ≤ t0 +
4L2(t0)
εL′2(t0)

. (3.13)

This proves that if t0 ≥ 0 is such that H(t0) ≥ 0 and H ′(t0) > 0, then u blows
up in finite time with a lifespan T ? bounded from above by the right hand side in
(3.13). We assume from now on that t0 ≥ 0 is such that H(t0) > 0, H ′(t0) ≥ 0,
and SH(t0) < 0. As already mentionned, we can write that H(t0 + s) > 0 and
H ′(t0 + s) > 0 for s > 0. In particular, it follows from what we just proved that u
blows up in finite time with a lifespan T ? bounded from above by

T ? ≤ t0 + s+
4L2(t0 + s)
εL′2(t0 + s)

(3.14)

for s > 0. Since L′′2(t) ≥ εmH(t) for t ≥ t0, H(t) ≥ 0 and H ′(t) ≥ 0 for t ≥ t0, and
L′2(t) = H ′(t) for all t, we have that

L2(t0 + s) ≤ L2(t0) + sL′2(t0 + s) , and

L′2(t0 + s) ≥ L′2(t0) + s min
t∈[t0,t0+s]

H ′′(t) ≥ L′2(t0) + sεmH(t0) . (3.15)

By combining (3.14) and (3.15), it follows that

T ? ≤ t0 + Tt0(s) , where

Tt0(s) =
(

1 +
4
ε

)
s+

4L2(t0)
ε (L′2(t0) + sεmH(t0))

.
(3.16)

Let s0 be given by

s0 =

√
4L2(t0)

ε(ε+ 4)mH(t0)
− L′2(t0)
εmH(t0)

. (3.17)

Then s0 > 0 if SH(t0) < 0. The function Tt0 in (3.16) is decreasing up to s0, and
increasing after s0. By (3.16) we can write that if t0 ≥ 0 is such that H(t0) > 0,
H ′(t0) ≥ 0, and SH(t0) < 0, then u blows up in finite time with a lifespan T ?

bounded from above by T ? ≤ t0 +Tt0(s0), where s0 is given by (3.17). Noting that
t0 +Tt0(s0) is precisely the right hand side of the first equation in (3.8) when t = t0,
and that t0 + Tt0(s0) is less than the right hand side in (3.13), this ends the proof
of the lemma. �

Several situations where blow-up occurs can be obtained with Lemma 3.1. In
particular, Theorem 3.1 below holds true. Theorem 3.1 for Klein-Gordon equations
in domains of the Euclidean space was proved in Cazenave [8]. The negative energy
part in Theorem 3.1 was proved in Levine [38] in such a general setting that it
includes the present situation. Possible related references on such kind of results
are John [25] and Strauss [57].
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Theorem 3.1. Let f satisfy (1.1) and (3.1), and let u be a solution of (0.1) with
Cauchy data u0, u1. Suppose that one of the three following conditions (i)-(iii) is
satisfied :

(i) E(u0, u1) < 0, or E(u0, u1) = 0 and u 6≡ 0,
(ii) (u0, u1)L2×L2 > 2+ε√

(4+ε)εm
E(u0, u1),

(iii) (u0, u1)L2×L2 + Λ(m)H(0) > 0,
where E is the total energy as in (1.3), H = Hu0,u1 is as in (3.6), Λ(m) =

√
εm
8 if

H(0) ≥ 0, and Λ(m) =
√

εm
2 if H(0) ≤ 0. Then u blows up in finite time.

Proof. Suppose first that E(u0, u1) < 0. By contradiction we assume that u exists
for all t ≥ 0. Since E(u0, u1) < 0, we have that H(t) > 0 for all t ≥ 0. By
(3.10), we also have that H ′′(t) ≥ 2(2 + ε)|E(u0, u1)| for all t ≥ 0. It clearly follows
from such an inequality that H ′(t) > 0 for t� 1 large, a contradiction by Lemma
3.1. This proves that u blows up in finite time if E(u0, u1) < 0. Suppose now
that E(u0, u1) = 0 and that (u0, u1) 6≡ (0, 0). Clearly H(t) ≥ 0 for all t ≥ 0.
By contradiction we assume that u exists for all t ≥ 0. Then, by Lemma 3.1,
H ′(t) ≤ 0 for all t ≥ 0. By (3.10), H ′′(t) ≥ 0 for all t ≥ 0, and H ′ is nondecreasing.
Since H(t) ≥ 0 for all t ≥ 0, we get that H ′(t) → 0 as t → +∞. We have that
L′2(t) = H ′(t) and L′′2(t) = H ′′(t) for all t ≥ 0 (and even that L2 = H in the present
context). With (3.10) we can write that L′′2(t) ≥ 2εE0(u, ut) for all t ≥ 0, where
E0 is as in (1.3). In particular,∫ t2

t1

E0(u, ut)dt ≤
1
2ε
|L′2(t1)| (3.18)

for all t1 < t2, and we get that there exists a sequence (tk)k such that tk → +∞ as
k → +∞, and such that E0 (u(tk), ut(tk)) → 0 as k → +∞. By the conservation
of the total energy in Theorem 1.1 we also have that E (u(tk), ut(tk)) = 0 for all k.
Now we can use (3.2) with µ = m/2, and the Sobolev embedding theorem, to write
that there exists C > 0 such that for all k,

0 = E (u(tk), ut(tk))

≥ 1
2
E0 (u(tk), ut(tk))− C‖u(tk)‖p+1

Lp+1

≥
(

1
2

+ o(1)
)
E0 (u(tk), ut(tk)) ,

(3.19)

where o(1) → 0 as k → +∞. For k � 1 sufficiently large, (3.19) is impossible.
This proves that u blows up in finite time if E(u0, u1) = 0 and (u0, u1) 6≡ (0, 0).
In particular, point (i) in Theorem 3.1 is proved. Now we assume that u0 and u1

are such that the strict inequality in point (ii) of Theorem 3.1 is satisfied. Then
Φ(0) > 0, where Φ(t) for t ≥ 0 is given by

Φ(t) =
1
2
L′2(t)− 2 + ε√

εm(4 + ε)
E(u0, u1) . (3.20)

By contradiction we assume that u exists for all t ≥ 0. From (3.7) we easily deduce
that

|L′2(t)| ≤ εm√
εm(4 + ε)

L2(t) +

√
εm(4 + ε)
εm

‖ut‖2L2
(3.21)
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for all t ≥ 0. By combining (3.10) and (3.21) we then get that

L′′2(t) ≥
√
εm(4 + ε) |L′2(t)| − 2(2 + ε)E(u0, u1) (3.22)

for all t ≥ 0. Then, by (3.22), Φ′(t) ≥
√
εm(4 + ε)Φ(t) for all t ≥ 0, where Φ(t) is

given by (3.20). It follows from Gronwall’s inequality that

Φ(t) ≥ Φ(0)e
√
εm(4+ε)t (3.23)

for all t ≥ 0. Since we assumed that Φ(0) > 0, we get with (3.23) that L′2(t)→ +∞
as t → +∞. In particular, L2(t) � 1 and L′2(t) > 0 for t � 1 large, and we get a
contradiction with Lemma 3.1. Point (ii) in Theorem 3.1 is proved. It remains to
prove (iii). We let u0 and u1 be as in point (iii) of Theorem 3.1. By contradiction
we assume that u exists for all t ≥ 0, and we distinguish the two cases H(0) ≥ 0
and H(0) < 0, where H = Hu0,u1 is given by (3.6). First we assume that H(0) ≥ 0.
Then, by (iii) and Lemma 3.1, H ′(0) < 0 and H(0) > 0. Since H ′′(t) ≥ εmH(t),
H ′ is nondecreasing in any time interval [0, t1) where H remains nonnegative, and
we can write that H(t) ≥ H(0) + tH ′(0) in [0, t1). It follows that H remains
nonnegative at least up to the time t0 = H(0)/|H ′(0)|. By (iii), t0 >

√
2/(εm)

while, since H ′′(t) ≥ εmH(t), we get that

H ′(t) ≥ H ′(0) + εm

∫ t

0

(H(0) +H ′(0)s) ds

= H ′(0)
(

1 +
εm

2
t2
)

+ εmH(0)t
(3.24)

for all t ∈ [0, t0]. In particular, H ′(t0) > 0, and since we also have that H(t0) ≥ 0,
the contradiction follows from Lemma 3.1. This proves (iii) when H(0) ≥ 0 and
we may now assume that H(0) < 0. Then H ′(0) > 0. Since H ′′(t) ≥ εmH(t), and
H is nondecreasing when H ′ ≥ 0, we can write that H ′(t) ≥ H ′(0) + tεmH(0) in
any time interval [0, t1) where H ′ remains nonnegative. It follows that H ′ remains
nonnegative at least up to the time t0 = H ′(0)/(εm|H(0)|). By (iii), t0 >

√
2/(εm)

while

H(t) ≥ H(0) +
∫ t

0

(H ′(0) + εmH(0)s) ds

= H(0) + tH ′(0) +
εmH(0)

2
t2

(3.25)

for all t ∈ [0, t0]. In particular, H(t0) > 0, and since we also have that H ′(t0) ≥ 0,
the contradiction follows from Lemma 3.1. Point (iii) in Theorem 3.1 is proved. �

By Lemma 3.1 we also get explicit upper bounds for the lifespan of u in Theorem
3.1. For instance, if E(u0, u1) < 0, then the lifespan T ? of u is such that

T ? ≤
(u0, u1)−L2×L2

(2 + ε)|E(u0, u1)|
+

4
ε

√
(4 + ε)‖u0‖2L2

εm‖u0‖2L2 − 2(2 + ε)E(u0, u1)

≤
(u0, u1)−L2×L2

(2 + ε)|E(u0, u1)|
+

4
ε

√
4 + ε

εm
,

(3.26)

where E is as in (1.3), (u0, u1)L2×L2 is the L2-scalar product of u0 with u1, and
‖u0‖L2 is the L2-norm of u0. We prove (3.26) as follows. Since E(u0, u1) < 0, we
have that H(t) > 0 for all t, where H = Hu0,u1 is given by (3.6). If H ′(0) ≥ 0,
we immediately get (3.26) with Lemma 3.1. If not the case, H ′(0) < 0. By
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(3.10) we have that H ′′(t) ≥ 2(2 + ε)|E(u0, u1)| for all t. Then we can write
that H ′(t) ≥ H ′(0) + 2(2 + ε)|E(u0, u1)|t, and if t0 > 0 is such that H ′(t) < 0 for
all t < t0 and H ′(t0) = 0, we get that

t0 ≤
(u0, u1)−L2×L2

(2 + ε)|E(u0, u1)|
. (3.27)

Then H(t0) > 0, H ′(t0) ≥ 0, and by Lemma 3.1, u blows up in finite time with
a lifespan T ? bounded from above by T ](t0), where T ] is given by (3.8). Since
H ′(t) ≤ 0 for t ≤ t0, we have that L2(t0) ≤ L2(0), and (3.26) follows from the
bound T ? ≤ T ](t0) and the bound (3.27) on t0. Similar upper bounds can be
obtained in the other cases of Theorem 3.1.

4. Small initial data

We aim here in proving that if u is a solution of (0.1) with Cauchy data u0, u1, and
if E0(u0, u1) is small, where E0 is as in (1.3), then u exists for all t and the kinetic
energy E0 (u(t), ut(t)) at all time is controlled by the kinetic energy E0(u0, u1) at
time t = 0. Theorem 4.1 for Klein-Gordon equations in domains of the Euclidean
space was proved in Cazenave [8]. The result was recently emphasized in Keel and
Tao [29].

Theorem 4.1. Let f satisfy (1.1) and (3.1). Then there exists δ > 0 and a function
K ∈ C1(R+,R+) with K(0) = 0 such that for any (u0, u1) ∈ H2 × L2 of kinetic
energy E0(u0, u1) < δ, the solution u of (0.1) with Cauchy data u0, u1 exists for all
t ∈ R, and satisfies that E0 (u(t), ut(t)) ≤ K (E0(u0, u1)) for all t.

Proof. By (1.3) and (3.2) with µ = m
2 , there exists C > 0 such that for any u ∈ H2

and any v ∈ L2,

E(u, v) ≥ E0(u, v)− m

4

∫
Rn
u2dx− C

∫
Rn
|u|p+1dx

≥ 1
2
E0(u, v)− C

∫
Rn
|u|p+1dx .

By Sobolev embeddings it follows that there exists C1 > 0 such that for any u ∈ H2

and any v ∈ L2,

E(u, v) ≥ 1
2
E0(u, v)− C1E0(u, v)

p+1
2 . (4.1)

Letting y = 0 in (1.1) we get that |f(x)| ≤ C (|x|+ |x|p) for all x ∈ R, where C > 0
is independent of x. By Sobolev embeddings and (1.3), integrating this inequality,
we also get that there exists C2 > 1 such that for any u ∈ H2 and any v ∈ L2,

E(u, v) ≤ C2E0(u, v)
(

1 + E0(u, v)
p−1
2

)
. (4.2)

Let h1, h2 : R+ → R be the functions of E0(u, v) we have in the right hand sides of
(4.1) and (4.2). Namely, h1(t) = 1

2 t−C1t
(p+1)/2 and h2(t) = C2t(1+t(p−1)/2). Both

h1 and h2 are C1-functions on R+. We have that h1(0) = h2(0) = 0, h′1(0) > 0,
and h′2(0) > 0. We let δ1 > 0 be such that h′1(t) > 0 for all 0 ≤ t ≤ 2δ1, and let
δ2 ∈ (0, δ1) be such that h′2(t) > 0 for all 0 ≤ t ≤ δ2, and h2(δ2) < h1(δ1). We let
h ∈ C1(R+,R+) be such that h = h−1

1 in [0, h1(2δ1)]. Let u0 ∈ H2 and u1 ∈ L2

be such that E0(u0, u1) < δ2. By (4.2) we get that E(u0, u1) < h2(δ2), and we can
write that E(u0, u1) < h1(δ1). We also have that E0(u0, u1) < δ1. Let u be the
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solution of (0.1) with Cauchy data u0, u1. The function t→ E0(u, ut) is continuous.
For t ≥ 0 small, E0(u, ut) < δ1. We claim here that for any t ∈ [0, T ?), E0(u, ut) <
δ1, where T ? is the maximal time of existence of u. Indeed if E0(u, ut) ≥ δ1 at
t = t0 for some t0 > 0, then there exists some possibly other time t1 > 0 such
that E0(u, ut) ∈ [δ1, 2δ1) at t = t1. By (4.1), since h1 is increasing on [0, 2δ1], it
follows that h1(δ1) ≤ h1 (E0(u, ut)) ≤ E(u, ut) at t = t1. By the conservation of
the total energy in Theorem 1.1, E(u, ut) = E(u0, u1). Since E(u0, u1) < h1(δ1),
the contradiction follows. This proves the above claim that if E0(u0, u1) < δ2, then
E0(u, ut) < δ1 for all t ∈ [0, T ?). When n ≤ 4, or p < 2] − 1 and n ≥ 5, we then
get by Proposition 2.2 that T ? = +∞, and thus that u exists for all t ≥ 0. In the
critical case, where n ≥ 5 and p = 2] − 1, we let δ > 0 be as in (1.34). Let also
δ1 > 0 be such that C

√
δ1 ≤ δ for some C > 0, T < T ? be such that

T +
δ√

1 + δ1
> T ? ,

and U be the solution of the linear equation (1.27) with Cauchy data u(T ) and
ut(T ). By the Strichartz estimates in Lemma 1.1 of Section 1, there exists C0 > 0,
independent of T , such that

‖U‖Lq(I,Lr) ≤ C0

√
E0 (u(T ), ut(T )) (4.3)

for all interval I ⊂ R+ of length |I| ≤ 1 such that T ∈ I, where q = qn and r = rn
are as in (1.19). Letting C = C0 it easily follows from (1.34) that, here again, in
the critical case, we must have that T ? = +∞ and that u exists for all t ≥ 0. Now,
by the conservation of the total energy, and by (4.2),

E(u, ut) = E(u0, u1) ≤ h2 (E0(u0, u1)) (4.4)

for all t ≥ 0. We also have that h2 (E0(u0, u1)) < h2(δ2) and h2(δ2) < h1(2δ1) when
E0(u0, u1) < δ2. In particular, by (4.1) and (4.4), E0(u, ut) ≤ K (E0(u0, u1)) for all
t ≥ 0, where K = h ◦ h2 is C1 on [0, δ2] and can thus be regarded as being defined
and C1 on the whole of R+. It remains to prove similar estimates for t ≤ 0. For
u0 ∈ H2 and u1 ∈ L2, we let v be the solution of (0.1) with Cauchy data u0, −u1.
If E0(u0, u1) < δ2, we get with the above discussion that v exists for all t ≥ 0 and
that E0(v, vt) ≤ K (E0(u0, u1)) for all t ≥ 0. Let w be defined by w(t, ·) = u(t, ·)
if t ≥ 0, and w(t, ·) = v(−t, ·) if t ≤ 0. Clearly, if we still denote by w the map
t → w(t, ·), then w ∈ C0(R, H2), w ∈ C1(R, L2), w|t=0 = u0, and wt|t=0 = u1. As
is easily checked, since u and v solves (0.1) in R+, we also get that w ∈ C2(R, H−2)
and that w solves (0.1) in R. This proves the Theorem. �

In the spirit of Theorem 4.1, using slightly different arguments, a complete pic-
ture can be given in the particular case of the model equation (2.12) when p is
subcritical. We assume in what follows that p < 2] − 1 when n ≥ 5 and consider
(2.12) for which f(x) = λ|x|p−1x. We let u0 ∈ H2, u1 ∈ L2, and u be the solution
of (2.12) with Cauchy data u0 and u1. We already know by Corollary 2.1 that in
the defocusing case, where λ < 0, u exists for all t ∈ R. By Sobolev embeddings,
and conservation of the energy, we also get that E0(u, ut) ≤ K (E0(u0, u1)) for all
t, where K(s) = s + Λs(p+1)/2 for some Λ > 0. In the focusing case, where λ > 0,
we let

S =
{

(u, v) ∈ H2 × L2 s.t. E(u, v) ≤ δ0 and I(u) ≥ 0
}
,

S ′ =
{

(u, v) ∈ H2 × L2 s.t. E(u, v) < δ0 and I(u) < 0
}
,

(4.5)
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where E is as in (1.3), I(u) = ‖u‖2H2 − λ‖u‖p+1
Lp+1 , ‖ · ‖H2 is as in (1.2), δ0 is given

by

δ0 =
(p− 1)K

p+1
p−1
p

2(p+ 1)λ
2
p−1

, (4.6)

and Kp is the sharp constant for subcritical embeddings defined as the infimum
over u in H2\{0} of the ratio ‖u‖2H2/‖u‖2Lp+1 . By Hölder’s inequality we have
that ‖u‖Lp+1 ≤ ‖u‖θ

L2] ‖u‖
1−θ
L2 , where θ ∈ (0, 1) is given by 4(p + 1)θ = n(p − 1).

In particular, we can write that Kp ≥ m1−θKθ
n, where Kn is the infimum over u

in H2\{0} of the ratio ‖∆u‖2L2/‖u‖2
L2] . The exact value of Kn was computed in

Beckner [2], Edmunds, Fortunato, and Janelli [14], Lieb [39], and Lions [42]. It is
given by Kn = n(n−4)(n2−4)π2Γ(n/2)4/nΓ(n)−4/n, where Γ is the Euler function.
Following Payne-Sattinger [48] and Sattinger [51] we easily get that the following
proposition holds true.

Proposition 4.1. Assume p < 2] − 1 when n ≥ 5 and consider (2.12) with λ > 0.
For u0 ∈ H2 and u1 ∈ L2, let u be the solution of (2.12) with Cauchy data u0 and
u1. Given δ0 > 0 as in (4.6), the sets S and S ′ in (4.5) are stable. Moreover, if
(u0, u1) ∈ S, then u exists for all t ∈ R, and

1
2

∫
Rn
u2
tdx+

p− 1
2(p+ 1)

∫
Rn

(
(∆u)2 +mu2

)
dx ≤ E(u0, u1) (4.7)

for all t ∈ R, and if (u0, u1) ∈ S ′, then u blows up in finite time.

As is easily checked, for any (u, v) ∈ H2×L2, we do have here, in the model case,
that E(u, v) ≤ E0(u, v) and that if E0(u, v) ≤ δ20 , then I(u) ≥ 0. In particular,
it follows from Proposition 4.1 that when f(x) = λ|x|p−1x for some λ > 0, and
p < 2] − 1 if n ≥ 5, then we can take δ = min

(
δ0, δ

2
0

)
in Theorem 4.1. Proposition

4.1 provides an explicit value for δ in Theorem 4.1.

Proof. First we prove that S is stable and that if (u0, u1) ∈ S, then u exists for all
t ∈ R, and (4.7) holds true for all t. Let u ∈ H2, v ∈ L2, and I be as in (4.5). A
first remark is that if I(u) ≥ 0, then we can write that

E(u, v) =
1
2

∫
Rn

(
(∆u)2 +mu2

)
dx− λ

p+ 1

∫
Rn
|u|p+1dx+

1
2

∫
Rn
v2dx

≥ p− 1
2(p+ 1)

∫
Rn

(
(∆u)2 +mu2

)
dx+

1
2

∫
Rn
v2dx .

(4.8)

In particular, E0(u, v) is bounded from above by p+1
p−1E(u, v), and the estimate (4.7)

follows from (4.8) and the stability of S. Another remark is that if I(u) = 0, then∫
Rn

(
(∆u)2 +mu2

)
dx = λ

∫
Rn
|u|p+1dx ≥ Kp

(∫
Rn
|u|p+1dx

) 2
p+1

(4.9)

and we get a lower bound for the Lp+1-norm of u if u 6≡ 0. In particular, by (4.8)
and (4.9), we can write that

E(u, v) ≥ (p− 1)λ
2(p+ 1)

∫
Rn
|u|p+1dx+

1
2

∫
Rn
v2dx

≥ (p− 1)λ
2(p+ 1)

∫
Rn
|u|p+1dx ≥ δ0

(4.10)
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for all u ∈ H2\{0} and all v ∈ L2 when I(u) = 0. Furthemore,

I(u) ≥ ‖u‖2H2

(
1− λ

‖u‖(p−1)/2
H2

K
(p+1)/2
p

)
≥ 0 (4.11)

when ‖u‖H2 ≤ δ0. Now we prove the stability of S. Let (u0, u1) ∈ S, and let u be
the solution of (0.1) with Cauchy data u0, u1. First we assume that E(u0, u1) < δ0.
The function t→ I (u(t)) is continuous and nonnegative at t = 0. By contradiction
we assume that there exists t0 > 0 such that (u(t0), ut(t0)) 6∈ S. By conservation
of the energy, E (u(t0), ut(t0)) = E(u0, u1) < δ0. It follows that I (u(t0)) < 0. We
let t1 ∈ [0, t0) be such that I (u(t1)) = 0 and I (u(t)) < 0 for t ∈ (t1, t0). By
(4.10) and conservation of the energy, we have that u(t1) = 0, and since I ≥ 0 in a
neighbourhood of 0 by (4.11), we get a contradiction. In particular, if (u0, u1) ∈ S
is such that E(u0, u1) < δ0, then (u, ut) ∈ S for all t. By (4.8) we then get that
E0(u, ut) remains bounded, and it follows from Proposition 2.2 that u exists for all
t ≥ 0. Now we assume that E(u0, u1) = δ0. Suppose that for some time t0 ≥ 0,
I(u) = 0 at time t = t0. Then either u(t0) ≡ 0, and in that case I (u(t)) ≥ 0 for
t ≥ t0 close to t0 by (4.11), or u(t0) 6≡ 0. When u(t0) 6≡ 0, we get by (4.10) that
ut(t0) ≡ 0 and that u = u(t0) is a minimizer for Kp. In particular, since I(u) = 0 at
t = t0, we get that u = u(t0) is a stationnary solution of (0.1). By the uniqueness of
the solution in Theorem 1.1, it follows that (u, ut) = (u(t0), 0) for all t ≥ t0. In that
case, I(u) = 0 for all t ≥ t0, and it follows from the discussion that if E(u0, u1) = δ0
and if for some time t0 ≥ 0, I(u) = 0 at time t = t0, then I (u(t)) ≥ 0 for t ≥ t0
close to t0. In particular, the set consisting of the t ≥ 0 such that (u(t), ut(t)) ∈ S is
both open and closed in [0, T ?). As a consequence, (u, ut) ∈ S for all t. By (4.8), as
above, we then get that E0(u, ut) remains bounded, and it follows from Proposition
2.2 that u exists for all t ≥ 0. Summarizing, S is stable, and if (u0, u1) ∈ S then the
solution u of (0.1) with Cauchy data u0, u1 exists for all t ≥ 0. Moreover, by (4.8),
we also have that (4.7) holds true for all t ≥ 0. If (u0, u1) ∈ S, then (u0,−u1) ∈ S.
By reversing time, u exists for all t ∈ R. Now we prove that S ′ is also stable, but
with the property that if (u0, u1) ∈ S ′, then the solution u of (0.1) with Cauchy
data u0 and u1 blows up in finite time. The stability of S ′ easily follows from the
conservation of the total energy in Theorem 1.1, (4.11), and the remark in (4.10)
that E(u, ut) ≥ δ0 if I(u) = 0 and u 6≡ 0. In particular, starting with (u0, u1) ∈ S ′,
we get that (u, ut) ∈ S ′ for all t, where u is the solution of (0.1) with Cauchy data
u0, u1. It remains to prove that u blows up in finite time. Let L2 be as in (3.5).
By (3.7), since u solves (0.1),

L′′2(t) = 2
∫

Rn
u2
tdx− 2I(u) (4.12)

for all t ≥ 0. In particular, since (u, ut) ∈ S ′, we get that L′′2(t) ≥ 0 for all t ≥ 0.
If L′2(t1) > 0 for some t1 ≥ 0, then L′2(t) ≥ L′2(t1) for all t ≥ t1, and if u exists
for t � t1 sufficiently large with respect to t1, we get that H(t) > 0 for t � t1,
where H is as in (3.6). In particular, u blows up in finite time by Lemma 3.1. We
may therefore assume in what follows that L′2(t) ≤ 0 for all t ≥ 0. In particular,
L2 is nonincreasing and nonnegative, while L′2 is nondecreasing and nonpositive.
By contradiction we also assume that u exists for all t ∈ R+. Then, as is easily
checked, L2(t)→ α and L′2(t)→ 0 as t→ +∞, where α ≥ 0, and we also get that
L′′2(tk)→ 0 as k → +∞ for a sequence (tk)k such that tk → +∞ as k → +∞. By
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(4.12) it follows that ∫
Rn
ut(tk)2dx→ 0 and I (u(tk))→ 0 (4.13)

as k → +∞. By the definition of Kp and (4.6) we can write that if u ∈ H2\{0} is
such that I(u) ≤ 0, so in particular if u ∈ H2 is such that I(u) < 0, then

δ0 ≤
p− 1

2(p+ 1)

( ∫
Rn
(
(∆u)2 +mu2

)
dx(

λ
∫

Rn |u|p+1dx
)2/(p+1)

) p+1
p−1

≤ p− 1
2(p+ 1)

(
λ
∫

Rn |u|
p+1dx+ I(u)(

λ
∫

Rn |u|p+1dx
)2/(p+1)

) p+1
p−1

≤ (p− 1)λ
2(p+ 1)

∫
Rn
|u|p+1dx .

(4.14)

Letting u = u(tk) in (4.14), it follows from (4.13) and (4.14) that

δ0 ≤ E (u(tk), ut(tk))− 1
2

∫
Rn
ut(tk)2dx− 1

2
I (u(tk))

≤ E (u(tk), ut(tk)) + o(1)
(4.15)

for all k, where o(1) → 0 as k → +∞. By the conservation of the total energy
in Theorem 1.1 we would get with (4.15) that E(u0, u1) ≥ δ0, a contradiction. In
particular, u blows up in finite time, and this ends the proof of the proposition. �

In the critical case, where p = 2] − 1 when n ≥ 5, it remains true that both
S and S ′ are stable, that if (u0, u1) ∈ S ′, then u blows up in finite time, and
that if (u0, u1) ∈ S, then E0(u, ut) remains bounded in [0, T ?). In particular, if
E0(u0, u1) ≤ δ0, then E0(u, ut) remains bounded as long as u exists. Important
advances in the radially symmetric case for the focusing energy-critical Schrödinger
equation have been obtained in the recent Kenig and Merle [30]. Kenig and Merle
[31] also recently solved the case of the focusing energy-critical wave equation in
dimensions 3 ≤ n ≤ 5.

5. Uniform bounds

We aim in this section in proving uniform energy bounds for solutions of (0.1)
which exist on the half line R+, or the whole line R. Such bounds have already
been proved in Theorem 4.1 and Proposition 4.1 in the case of small energy data,
with an explicit expression for the bound in Proposition 4.1. A consequence of the
mathematics developed in Section 3 is that we also have an explicit expression for
the bound when we restrict our attention to the L2-norm of the solution. More
precisely, the following proposition holds true.

Proposition 5.1. Let f satisfy (1.1) and (3.1), and let u be a solution of (0.1)
with Cauchy data u0, u1. If u exists on the half line R+, then∫

Rn
u2dx ≤ 2(2 + ε)

εm
E(u0, u1) + min

(
H(0)+,

2 (u0, u1)−L2×L2

εmt

)
(5.1)

for all t ≥ 0, where H is as in (3.6), (u0, u1)L2×L2 is the L2-scalar product of u0

with u1, and E is the total energy as in (1.3).
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Another way we can write (5.1) in Proposition 5.1 is that if f satisfies (1.1) and
(3.1), and if u the solution of (0.1), with Cauchy data u0 and u1, exists on the half
line R+, then ∫

Rn
u2dx ≤ max

(
‖u0‖2L2 ,

2(2 + ε)
εm

E(u0, u1)
)
, and∫

Rn
u2dx ≤ 2(2 + ε)

εm
E(u0, u1) +

2 (u0, u1)−L2×L2

εmt

(5.2)

for all t ≥ 0, where E is as in (1.3), (u0, u1)L2×L2 is the L2-scalar product of u0

with u1, and ‖u0‖L2 is the L2-norm of u0. The first equation in (5.2) is of interest
when t ≥ 0 is small. The second equation in (5.2) is of interest when t ≥ 0 is large.

Proof. We prove (5.2). By Lemma 3.1, H ′(t) ≤ 0 when H(t) ≥ 0, and H ′(t) < 0
when H(t) > 0. It follows that H(t) ≤ H(0)+ for all t ≥ 0. This proves that the first
equation in (5.2) holds true. By Theorem 3.1 we clearly have that E(u0, u1) ≥ 0
while, by Lemma 3.1, H(0) ≤ 0 if (u0, u1)L2×L2 ≥ 0. In particular, the second
equation in (5.2) reduces to the first equation in (5.2) if (u0, u1)L2×L2 ≥ 0. We
assume in what follows that (u0, u1)L2×L2 < 0. Since H ′(t) ≤ 0 when H(t) ≥ 0,
and H ′(t) < 0 when H(t) > 0, we can write that if H(t0) < α for some t0 ≥ 0,
and some α > 0, then H(t) < α for all t ≥ t0. In particular, if H(t1) ≥ α for some
t1 > 0 and some α > 0, then H(t) ≥ α for all t ∈ [0, t1]. By (3.10) we have that
H ′′(t) ≥ εmH(t) for all t ∈ [0, t1]. It follows that

H ′(t1) ≥ H ′(0) + t1εmα . (5.3)

By Lemma 3.1 we necessarily have that H ′(t1) < 0 since H(t1) > 0. Therefore, by
(5.3), we get that α ≤ −H ′(0)/(εmt1), and we proved that if t = t1 is such that
H(t) ≥ α > 0, then α ≤ −H ′(0)/(εmt). In particular, the second equation in (5.2)
holds true. This ends the proof of the proposition. �

In addition to Proposition 5.1, we also get a bound for the derivative of the
L2-norm of u. By Theorem 3.1 we may assume in Lemma 5.1 that E(u0, u1) > 0.
More precisely, we get that the following lemma holds true.

Lemma 5.1. Let f satisfy (1.1) and (3.1), and let u be a nontrivial solution of
(0.1) with Cauchy data u0, u1. If u exists on the half line R+, then

|L′2(t)| ≤ 2(2 + ε)E(u0, u1)√
εm(4 + ε)

+
(
1− χ{t≥t0}

)
L′2(0)− (5.4)

for all t ≥ 0, where

t0 =

√
εm(4 + ε)‖u0‖2L2

2(2 + ε)E(u0, u1)
, (5.5)

L2 is as in (3.5), E is given by (1.3), and χ{t≥t0} is the characteristic function of
the interval [t0,+∞).

Proof. We let Φ be the function given by (3.20) in the proof of Theorem 3.1, and
let Ψ = Φ− L′2. By (3.22) in the proof of Theorem 3.1,

Φ′(t) ≥
√
εm(4 + ε)Φ(t) (5.6)
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for all t ≥ 0. Assuming that there exists t1 ≥ 0 such that Φ(t1) > 0, we get with
Gronwall’s inequality that

Φ(t) ≥ Φ(t1)e
√
εm(4+ε)(t−t1) (5.7)

for all t ≥ t1. In particular, L′2(t) → +∞ as t → +∞, and for t � 1 sufficiently
large we get that L2(t) � 1 and L′2(t) > 0. By Lemma 3.1 this is impossible. In
particular Φ(t) ≤ 0 for all t ≥ 0. By (3.22) in the proof of Theorem 3.1 we also
have that

Ψ′(t) ≤ −
√
εm(4 + ε)Ψ(t) (5.8)

for all t ≥ 0. It follows form (5.8) and Gronwall’s inequality that

Ψ(t) ≤ Ψ(0)e−
√
εm(4+ε)t (5.9)

for all t ≥ 0, and we get with (5.9) that Ψ(t) ≤ max (Ψ(0), 0) for all t ≥ 0. Since
we also have that Φ(t) ≤ 0 for all t ≥ 0, it follows that

|L′2(t)| ≤ max

(
−L′2(0),

2(2 + ε)E(u0, u1)√
εm(4 + ε)

)

≤ 2(2 + ε)E(u0, u1)√
εm(4 + ε)

+ L′2(0)−
(5.10)

for all t ≥ 0. Let now t0 be as in (5.5). By (5.8) and Gronwall’s inequality we can
write that

Ψ(t) ≥ Ψ(t0)e
√
εm(4+ε)(t0−t) (5.11)

for all 0 ≤ t ≤ t0. If Ψ(t0) > 0 we get with (5.11) that Ψ(t) > 0 for all 0 ≤ t ≤ t0.
In particular,

L′2(t) <
−2(2 + ε)E(u0, u1)√

εm(4 + ε)
(5.12)

for all 0 ≤ t ≤ t0, and by integrating (5.12) on [0, t0], we get with (5.5) that
L2(t0) < 0. Since, by definition, L2(t) ≥ 0 for all t, this is a contradiction and
it follows that Ψ(t0) ≤ 0. By (5.8) and Gronwall’s inequality we then get that
Ψ(t) ≤ 0 for all t ≥ t0. Since we also have that Φ(t) ≤ 0 for all t ≥ 0, it follows
that

|L′2(t)| ≤ 2(2 + ε)E(u0, u1)√
εm(4 + ε)

(5.13)

for all t ≥ t0. We get (5.4) by combining (5.10) and (5.13). This ends the proof of
Lemma 5.1. �

We prove in the sequel that the uniform L2-bounds of Proposition 5.1 extend
to bounds on the whole kinetic energy E0 for particular values of p in (1.1). Such
bounds for Klein-Gordon equations in domains of the Euclidean space were first
proved by Cazenave [8] with a nonlinear term growing at most like half the critical
Sobolev exponent for H1-embeddings. The kinetic energy associated to Klein-
Gordon equations controls the H1-norm in 1 + n dimensions. For (0.1) we may
regard the spatial Sobolev space H2 as a subset of the spatial Sobolev space H1

and then restrict ourselves to controlling the sole H1-norm in 1 + n dimensions.
This loss of control on the derivatives when passing from H2 to H1 has no cost
when n = 1, a dimension where we still get with this approach the full range p > 1
in (1.1), but it has a cost when n ≥ 2 by imposing a condition like p ≤ 3 in (1.1).
Lemma 5.2 below allows us to recover the full range of exponents when n = 2,
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namely p > 1 arbitrary in (1.1) when n = 2. It also enables us, see (5.21) below, to
get better exponents than 3 when n = 3, 4, and to get better exponents than 2]/2
when n ≥ 5.

Lemma 5.2. Let I ⊂ R be an interval and u ∈ H1(I, L2)∩L2(I,H2) be such that∫
I

E0(u(s), ut(s))ds = N2 (5.14)

for some N ≥ 0. Then

‖u‖2L∞(I,L2) ≤ 2
(

1
m|I|

+
2√
m

)
N2 and

‖∇u‖2L∞(I,L2) ≤ 2
(

2 +
1

|I|
√
m

)
N2 ,

(5.15)

where |I| ≤ +∞ is the length of I.

Proof. Without loss of generality we may assume that I is bounded. First, we
suppose that u ∈ C1(I,H2). Since N is finite, by the mean value theorem, there
exists some time t0 ∈ I such that

E0(u(t0), ut(t0)) =
N2

|I|
,

where N is as in (5.14). Then,∫
Rn
|u(t0, y)|2dy ≤ 2N2

m|I|
and∫

Rn
|∇u(t0, y)|2dy =−

∫
Rn
u(t0, y)∆u(t0, y)dy ≤ 2N2

√
m|I|

.

(5.16)

Now, let t ∈ I. By time symmetry, we can suppose t0 ≤ t. We bound the gradient
norm by writing that∫

Rn
|∇u(t, y)|2dy =

∫
Rn

(
|∇u(t0, y)|2 + 2

∫ t

t0

∇ut(s, y)∇u(s, y)ds
)
dy

≤
∫

Rn
|∇u(t0, y)|2dy − 2

∫ t

t0

∫
Rn
ut(s, y)∆u(s, y)dyds

≤ 2
(

2 +
1√
m|I|

)
N2 ,

(5.17)

where we have used (5.16) in the last inequality. We bound the L2 norm similarly
by writing that∫

Rn
|u(t, y)|2dy =

∫
Rn

(
|u(t0, y)|2 + 2

∫ t

t0

ut(s, y)u(s, y)ds
)
dy

≤ 2
(

1
m|I|

+
2√
m

)
N2 ,

(5.18)

where, again, we have used (5.16) in the last inequality. Then (5.15) follows from
(5.17) and (5.18) in case u ∈ C1(I,H2). In case u ∈ H1(I, L2) ∩ L2(I,H2), the
result follows by density. �
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Corollary 5.1. Let n ≥ 3, I ⊂ R be an interval such that |I| ≥ 1, and (a, b) satisfy
(1.44) with a ≥ 6 if n = 3, 4, and a ≥ 2 if n ≥ 5. Let u ∈ H1(I, L2) ∩ L2(I,H2)
satisfy (5.14). Then

‖u‖La(I,Lb) ≤ CN , (5.19)

where C does not depend on u, a and I.

Proof. Assuming that n ≥ 5, we get from Lemma 5.2 that the bound holds true
for the endpoints (a, b) = (∞, 2?) and (a, b) = (2, 2]). Then (5.19) follows by
interpolation. Applying the same strategy when n = 3, 4, we only have to prove
(5.19) in the case a = 6. In this case, for u ∈ H2,

‖u‖
L

6n
3n−8

≤ C‖u‖
H

4
3
≤ C‖u‖

2
3
H1‖u‖

1
3
H2 (5.20)

and (5.19) follows from (5.14), (5.15) and (5.20). This neds the proof of the corol-
lary. �

For n ≥ 3, we define pn by

pn =
n+ 6
n− 2

. (5.21)

As is easily checked,

pn = 2] − 1 +O(
1
n2

)

as n→ +∞, and pn ≥ 2]/2 when n ≥ 6 with equality if and only if n = 6. Theorem
5.1 states as follows. Any p > 1 in (1.1) is allowed in the theorem when n = 1, 2.

Theorem 5.1. Let f satisfy (1.1) and (3.1) with p = pn when n ≥ 3, where pn
is as in (5.21). There exists K ∈ C1(R+,R+) with K(0) = 0 such that if u is a
solution of (0.1) with Cauchy data u0, u1, and if u exists on the half line R+, then

E0 (u(t), ut(t)) ≤ K (E0(u0, u1)) (5.22)

for all t ≥ 0, where E0 is given by (1.3). Moreover, there is a time t0 ≥ 0 such that
E0 (u(t), ut(t)) ≤ K (E(u0, u1)) for all t ≥ t0, where E is given by (1.3).

Proof. First we prove the theorem assuming that n = 1, 2 and p is arbitrary. By
(3.10) we can write that

L′′2(t) ≥ 2εE0(u, ut)− 2(2 + ε)E(u0, u1)

for all t ≥ 0, where L2 is as in (3.5). Let t0 be as in (5.5). By Lemma 5.1 and the
above inequality we get that∫ t2

t1

E0 (u(s), ut(s)) ds ≤
1
2ε

(L′2(t2)− L′2(t1))

+
(

1 +
2
ε

)
E(u0, u1)(t2 − t1)

≤ 2(2 + ε)E(u0, u1)
ε
√
εm(4 + ε)

+
1
ε

(
1− χ{t1≥t0}

)
|L′2(0)|

+
(

1 +
2
ε

)
E(u0, u1)(t2 − t1)

(5.23)
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for all t1 ≤ t2. Let h ∈ C1(R+,R+) be given by h(X) = ΛX(1 + X(p−1)/2) for
X ≥ 0, where Λ = C2 is as in (4.2), and S ∈ C1(R+,R+) be given by

S(X) =
(

1 +
2
ε

)(
1 +

2√
εm(4 + ε)

)
h(X) +

2(m+ 1)
εm

X (5.24)

for X ≥ 0. As is easiliy checked, S(0) = 0. Moreover, by (3.7), (4.2), and (5.23) we
can write that∫ t+1

t

E0 (u(s), ut(s)) ds ≤ S (E0(u0, u1)) for all t ≥ 0 , and∫ t+1

t

E0 (u(s), ut(s)) ds ≤ S (E(u0, u1)) for all t ≥ t0 .
(5.25)

Now, if p+1 ≤ 2?, conservation of energy, (5.15) and (5.25) and Sobolev’s inequality
ensures that E0(u, ut) remains bounded since

E0(u(t), ut(t)) = E(u(t), ut(t)) +
∫

Rn
F (u(t))dx

≤ E(u0, u1) + C
(
‖u(t)‖2L2 + ‖u(t)‖p+1

H1

)
≤ E(u0, u1) + C

(
Γ + Γ

p+1
2

)
,

(5.26)

where Γ stands for S (E0(u0, u1)) if t < t0, and S (E(u0, u1)) if t ≥ t0. This
settles the cases n = 1, 2. At this point it remains to treat the limit case when
p = (n + 6)/(n − 2) and n ≥ 3. We treat first the case of high dimensions n ≥ 5,
in which case, we can rely on the Strichartz estimate of Lemma 1.1. We let (a, b)
be the S-admissible pair defined by a = 2, b = 2?. We let also q = 2p and define
r, c to be such that (q, r) is B-admissible and (q, c) is B-intermediate in the sense
of (1.44). By Corollary 5.1, and by (5.25), we can write that(∫ t+1

t

‖u‖qLcds
)1/q

≤ C
√

Γ (5.27)

where C > 0 does not depend on t. Let us now fix t ≥ 1. By (5.25) there exists
t1 < t < t1 + 1 such that

E0(u(t1), ut(t1)) ≤ Γ, (5.28)
where Γ is defined as in (5.26). Let h1 and h2 be as in (1.17) in Section 1. By the
linear theory in Lemma 1.1 of Section 1, since h1 is Lipschitz and h2 satisfy (1.17),
we can write that for any interval I = [θ, θ′] of length less than 1,

‖u‖Lq(I,Lr) ≤ C
(√

Λ(θ) + ‖h1(u)‖L1(I,L2) + ‖h2(u)‖La′ (I,Lb′ )
)

≤ Cs
(√

Λ(θ) + ‖u‖L1(I,L2) + ‖u‖p
Lpa′ (I,Lpb′ )

) (5.29)

where Λ(t) = E0 (u(t), ut(t)), and C,Cs > 0 do not depend on t and j. Now we let
t2 = t < t3 < · · · < tk+1 = t1 + 1 be a partition of [t1, t1 + 1] such that

1
4Cs

≤ ‖u‖p−1
Lq([ti,ti+1],Lc)

≤ 1
2Cs

for i = 1, . . . , k, where Cs is the constant appearing in inequality (5.29). Then

k ≤
(

(4Cs)
1
p−1 C

√
Γ
)q

.
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By Hölder’s inequality, we get that

‖u‖p
Lpa′ (I,Lpb′ )

≤ ‖u‖p−1

Lpa′ (I,Lc)
‖u‖Lpa′ (I,Lr) (5.30)

for any bounded interval I ⊂ R. Noting that q = pa′, it follows from (5.25), (5.29)
and (5.30) that, for any j,

‖u‖Lq([tj ,tj+1],Lr) ≤ Cs

(√
Λ(tj) +

√
2
m

Γ + ‖u‖p−1
Lq([tj ,tj+1],Lc)

‖u‖Lq([tj ,tj+1],Lr)

)

≤ Cs

(√
Λ(tj) +

√
2
m

Γ +
1

2Cs
‖u‖Lq([tj ,tj+1],Lr)

)

≤ C

(√
Λ(tj) +

√
2
m

Γ

)
(5.31)

where C > 0 does not depend on j and t. Applying the Strichartz estimates again,
it follows from (5.31) that

sup
s∈[tj ,tj+1]

√
Λ(s) ≤ C

(√
Λ(tj) +

√
2
m

Γ + ‖u‖p−1
Lq([tj ,tj+1],Lc)

‖u‖Lq([tj ,tj+1],Lr)

)

≤ C

(√
Λ(tj) +

√
2
m

Γ

)
(5.32)

where, again, C > 0 in (5.32) does not depend on j. In particular,√
Λ(tj+1) ≤ C

(√
Λ(tj) +

√
2
m

Γ

)
and, as a consequence, we get that√

Λ(t) ≤ sup
s∈[t1,t1+1]

√
Λ(s)

≤ CΓ
q+1
2 .

(5.33)

In particular, we get with (5.33) that the theorem holds true when p = (n+6)/(n−2)
and n ≥ 5. Now, at this point, we assume that n = 3, 4 and we use the following
Strichartz estimates that can be deduced from the original one in much the same
way as the intermediate Strichartz estimates in (1.45). Let u ∈ C0([0, T ], H2) ∩
C1([0, T ], L2) be a strong solution of (1.7) where T ≤ 1 and k ∈ C0([0, T ], H−2).
We let also (q, r) be such that 2 ≤ q, r <∞ and

2
q

+
n

r
=

2n− 5
4

and (a, b) be such that 2 ≤ a, b <∞ and
2
a

+
n

b
=

2n− 3
4

.

Then there exists C > 0 independent of u such that

‖u‖Lq([0,T ],Lr) ≤ C
(√

E0(u0, u1) + ‖k1‖L1([0,T ],L2) + ‖k2‖La′ ([0,T ],Lb′ )

)
(5.34)
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for every decomposition k = k1 + k2. In order to prove (5.34) we write that
u = u1 + u2, where u1 satisfies (1.7) with initial data (u0, u1) and k = k1, and
u2 satisfies (1.7) with zero initial data and k = k2. On what concerns u1 we can
use the Strichartz estimates (1.8), while for u2 we proceed in the same way we did
when proving (1.45), except that we replace (1.46) by

‖v‖
L∞([0,T ],B

− 3
4

2,2 )
≤ C‖k‖La′ ([0,T ],B−1

c′,2)
and

‖v‖
L2([0,T ],B

− 3
4

2?,2)
≤ C‖k‖La′ ([0,T ],B−1

c′,2)
,

(5.35)

where again c > 1 is such that (a, c) is S-admissible. Now, we proceed as in the case
n ≥ 5. We find t1 ∈ [t−1, t] such that (5.28) holds true. Then, we split [t1, t1+1] into
disjoint intervals [ti, ti+1]. On each interval [ti, ti+1] we use the Strichartz estimates
(5.34) as above, with q = r = 4(n+ 2)/(2n− 5) and a = b = 4(n+ 2)/(2n− 3). We
get that

‖u‖Lq([ti,ti+1]×Rn)

≤ C
(√

Λ(ti) + ‖h1(u)‖L1([ti,ti+1],L2) + ‖h2(u)‖La′ ([ti,ti+1]×Rn)

)
≤ C

(√
Λ(ti) +

√
Γ
)

+ Cs‖up‖La′ ([ti,ti+1]×Rn)

≤ C
(√

Λ(ti) +
√

Γ
)

+ Cs‖u‖p−1

L
2(n+2)
n−2 ([ti,ti+1]×Rn)

‖u‖Lq([ti,ti+1]×Rn) .

(5.36)

Now we let the ti’s be such that

1
4Cs

≤ ‖u‖p−1

L
2(n+2)
n−2 ([ti,ti+1]×Rn)

≤ 1
2Cs

,

where Cs is the constant appearing in (5.36). By Corollary 5.1 we have that

k ≤ (4Cs)
n+2

4 (CΓ)
n+2
n−2 ,

and by (5.36),

‖u‖Lq([ti,ti+1]×Rn) ≤ C
(√

Λ(ti) +
√

Γ
)
.

Now, thanks to the Strichartz estimates of Lemma 1.1, we get that

‖u‖L∞([ti,ti+1],H2) + ‖ut‖L∞([ti,ti+1],L2)

≤ C
(√

Λ(ti) + ‖h1(u)‖L1([ti,ti+1],L2) + ‖h2(u)‖
L

2(n+2)
n+4 ([ti,ti+1]×Rn)

)
≤ C

(√
Λ(ti) +

√
Γ + ‖u‖pθLq([ti,ti+1]×Rn)‖u‖

p(1−θ)
L2([ti,ti+1]×Rn)

)
≤ C

(√
Λ(ti) +

√
Γ + (

√
Λ(ti) +

√
Γ)p
)
,

(5.37)

where θ = 4(3n+ 10)/(9(n+ 6)). In particular, we get a bound√
Λ(ti+1) ≤ G(

√
Λ(ti),

√
Γ)

and iterating this a finite number of times, we cover [t1, t1 + 1] and find a uniform
bound for E0(u(t), ut(t)) depending only on Γ. This finishes the proof of Theorem
5.1 in case n = 3, 4. Theorem 5.1 is proved. �
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As a remark, the time t0 in Theorem 5.1 is actually 1 + t0, where t0 is as in
(5.5). Another remark is that there is a simplier proof of Theorem 5.1 in case n ≥ 3
and p < min(pn, 2? + 1). Indeed, we may assume without loss of generality that
p ≥ 2? − 1. By conservation of the Energy we can write that given t ≥ 0,

‖u‖2H2 ≤ 2E(u0, u1) + 2
∫

Rn
F (u)dx

≤ µ‖u‖22 + C
(

1 + ‖u‖p+1
Lp+1

)
≤ µ

m
‖u‖2H2 + C

(
1 + ‖u‖(p+1)θ

L2∗ ‖u‖(p+1)(1−θ)
Lq

)
≤ µ

m
‖u‖2H2 + C

(
1 + ‖u‖(p+1)θ

L2? ‖u‖(p+1)(1−θ)
H2

)
(5.38)

where q is taken arbitrary large if n ≤ 4, while q = 2] if n ≥ 5, and

θ =
1
p+1 −

1
q

1
2? −

1
q

.

If n = 3, 4, we can take q →∞ and if p < 2?+1, we get, for q sufficiently large, that
(1−θ)(p+1) < 2, while if n ≥ 5, and if p < (n+6)/(n−2), then (1−θ)(p+1) < 2.
In particular, the energy stays bounded, controled by some function of ‖u‖L∞(R,H1).
This proves Theorem 5.1 in case n ≥ 3 and p < min(pn, 2? + 1)

When the solution u exists on the whole line R, Proposition 5.1, Lemma 5.1,
and Theorem 5.1 can be refined. This is what we prove in Corollary 5.2 below.

Corollary 5.2. Let f satisfy (1.1) and (3.1) with p ≤ pn when n ≥ 3, where pn is
as in (5.21). Let u be a solution of (0.1) with Cauchy data u0, u1. If u exists on
the whole line R, then

L2(t) ≤ 2(2 + ε)
εm

E(u0, u1) , and

|L′2(t)| ≤ 2(2 + ε)E(u0, u1)√
εm(4 + ε)

(5.39)

for all t ∈ R, where L2 is as in (3.5), and E is given by (1.3). Moreover,
E0 (u(t), ut(t)) ≤ K (E(u0, u1)), where E0 is given by (1.3), and K ∈ C1(R+,R+)
is as in Theorem 5.1.

Proof. We assume that u 6≡ 0. Then, by Theorem 3.1, E(u0, u1) > 0. Let t0 ∈ R
be any point in R. Let ũ and û be given by ũ(t) = u(t0 + t) and û(t) = u(t0 − t).
Both ũ and û are solutions of (0.1) defined on the half line t ≥ 0. Let H̃ and Ĥ be
the corresponding H-functions given by (3.6). If H is the H-function in (3.6) with
respect to u, we get with the conservation of the total energy in Theorem 1.1 that
H̃(t) = H(t0 + t) and Ĥ(t) = H(t0 − t) for all t ≥ 0. By Lemma 3.1, H̃ ′(0) ≤ 0 if
H̃(0) ≥ 0, and Ĥ ′(0) ≤ 0 if Ĥ(0) ≥ 0. It follows that H ′(t0) = 0 if H(t0) ≥ 0. By
(3.10), H ′′ ≥ εmH. This clearly implies that H(t) ≤ 0 for all t ∈ R. In particular,
the first equation in (5.39) is proved. Moreover, if t0 is as in (5.5), then

t0 ≤
√

4 + ε

εm
. (5.40)

Let t1 be larger than the right hand side in (5.40), and let t2 be any real number
such that t2 ≥ t1 + 1. Let also ũ be given by ũ(t) = u(t− t2). Then ũ solves (0.1)
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with Cauchy data u(−t2), ut(−t2). We apply Lemma 5.1 and Theorem 5.1 to ũ. By
the first equation in (5.39), which gives that the t0 for ũ is also bounded from above
as in (5.40), and by the conservation of the total energy in Theorem 1.1, we get that
the second equation in (5.39) and the bound E0 (u(t), ut(t)) ≤ K (E(u0, u1)) hold
true for t ≥ 1 + t1 − t2. Since t2 > 1 + t1 can be chosen arbitrarily large, it follows
that the second equation in (5.39) and the bound E0 (u(t), ut(t)) ≤ K (E(u0, u1))
hold true for all t ∈ R. This ends the proof of the corollary. �

The second equation in (5.39) could also have been proved by coming back to
Theorem 3.1. The equation is indeed a direct consequence of Theorem 3.1 and of
the remark that both t→ u(t) and t→ u(−t) exist on the half line t ≥ 0. Another
corollary to Theorem 5.1, and more precisely to the proof of Theorem 5.1, is as
follows.

Corollary 5.3. Let f satisfy (1.1) and (3.1) with p ≤ pn when n ≥ 3, where pn is
as in (5.21). Let u be a solution of (0.1) with Cauchy data u0, u1. Then u exists
on the whole line R if and only if∣∣(u, ut)L2×L2

∣∣ ≤ 2 + ε√
εm(4 + ε)

E(u0, u1) (5.41)

for all t, where (u, ut)L2×L2 is the L2-scalar product of u with ut.

Proof. If u exists on the whole line R, then (5.41) holds true by Corollary 5.2.
Conversely, we suppose that (5.41) holds true for all t where u is defined. By (3.10)
we can write that

L′′2(t) ≥ 2εE0(u, ut)− 2(2 + ε)E(u0, u1) (5.42)

for all t ≥ 0, where L2 is as in (3.5). By (5.41) and (5.42) we then get that∫ t2

t1

E0 (u(s), ut(s)) ds

≤ 1
2ε

(L′2(t2)− L′2(t1)) +
(

1 +
2
ε

)
E(u0, u1)(t2 − t1)

≤ 2(2 + ε)E(u0, u1)
ε
√
εm(4 + ε)

+
(

1 +
2
ε

)
E(u0, u1)(t2 − t1)

≤ 2(2 + ε)E(u0, u1)
ε
√
εm(4 + ε)

+
(

1 +
2
ε

)
E(u0, u1)

(5.43)

for all 0 ≤ t1 ≤ t2 such that u exists on [0, t2] and t2 ≤ t1 + 1. The arguments
developed in the proof of Theorem 5.1 together with (5.43), letting S be a constant
function in (5.25), give that E0(u, ut) is bounded for t ≥ 0. By Proposition 2.2 we
then get that u exists for all t ≥ 0. By reversing time, letting ũ(t) = u(−t) for
t ≤ 0, we also get that u exists for all t ≤ 0, and hence that u exists on the whole
line R. This proves the corollary. �

6. H4 solutions

In this section, we investigate the case where the initial data have more regularity.
We focus on the case where the initial data is in H4 × H2 instead of H2 × L2

and prove that the corresponding solution has itself more regularity as well. A
preliminary lemma we need is as follows.
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Lemma 6.1. Let T ≤ 1 and k ∈ C0([0, T ], L2). Assume that for some derivative
∂ = ∂α, where α = t or α = 1, . . . , n, ∂k ∈ La′([0, T ], Lb

′
) for some S-admissible

pair (a, b). Let w ∈ C0([0, T ], H2) ∩ C1([0, T ], L2) ∩ C2([0, T ], H−2) be a strong
solution of equation (1.7) with Cauchy data (w0, w1) ∈ H4 ×H2. Then there holds
that ∂w ∈ C0([0, T ], H2) ∩ C1([0, T ], L2) ∩ C2([0, T ], H−2), and

‖∂w‖C0([0,T ],H2) + ‖∂w‖Lc([0,T ],Ld)

≤ C
(
‖w0‖H4 + ‖w1‖H2 + ‖k(0)‖L2 + ‖∂k‖La′ ([0,T ],Lb′ )

) (6.1)

where (c, d) is any B-admissible pair, and C > 0 is independent of T , w and k.
Besides, in case ∂ = ∂t, it also holds that w enjoys the additional regularity that
w ∈ C0([0, T ], H4) ∩ C1([0, T ], H2) ∩ C2([0, T ], L2), and

‖w‖C0([0,T ],H4) ≤ C
(
‖w0‖H4 + ‖w1‖H2 + ‖k‖C0([0,T ],L2) + ‖kt‖La′ ([0,T ],Lb′ )

)
,

(6.2)
where C > 0 is independent of T , w and k.

Proof. By density, it suffices to prove this for smooth functions w0, w1 ∈ C∞0 (Rn)
and h ∈ C∞0 (R×Rn). First, we treat the case when ∂ = ∂t. We let v = ∂tw. Then
v satisfies (1.7) with kt instead of k, v(0) = w1, and vt(0) = k(0)−∆2w0. Applying
the Strichartz estimates (1.8), we obtain

‖v‖C0([0,T ],H2) + ‖vt‖C0([0,T ],L2) + ‖v‖Lc([0,T ],Ld)

≤ C
(
‖w1‖H2 + ‖w0‖H4 + ‖k(0)‖L2 + ‖kt‖La′ ([0,T ],Lb′ )

) (6.3)

where C > 0 is independent of w, T and k. Then, using equation (1.7), we get that
∆2w = k − wtt = k − vt ∈ C0([0, T ], L2). Besides, the Strichartz estimates (1.8)
applied to w give that

‖w‖C0([0,T ],H2) ≤ C
(
‖w0‖H2 + ‖w1‖L2 + ‖k‖L1([0,T ],L2)

)
. (6.4)

Consequently, w ∈ C0([0, T ], H4)∩C1([0, T ], H2)∩C2([0, T ], L2), and (6.2) follows
from (6.3) and (6.4). Now, in case ∂ = ∂i for some i = 1, . . . , n, letting again
v = ∂w, we get that v satisfies (1.7) with ∂k instead of k and (v(0), vt(0)) =
(∂w0, ∂w1) ∈ H2 × L2. Applying the Strichartz estimates (1.8), we obtain

‖v‖C0([0,T ],H2) + ‖vt‖C0([0,T ],L2) + ‖v‖Lc([0,T ],Ld)

≤ C
(
‖w1‖H2 + ‖w0‖H4 + ‖∂k‖La′ ([0,T ],Lb′ )

)
.

(6.5)

Clearly, (6.5) give (6.1). This ends the proof of Lemma 6.1 �

As a remark the above developments can be easily adapted when w satisfies (1.7)
with initial data (w0, w1) ∈ H4 ×H2 and k = h1 + h2, where h1 ∈ C1([0, T ], H1)
and h2 ∈ C0([0, T ], L2) with h2, ∂h2 ∈ La

′
([0, T ], Lb

′
). The main result of this

section is as follows.

Proposition 6.1. Let u be a strong solution of (0.1) in [0, T ] with f satisfying (1.1)
and (u0, u1) ∈ H4 ×H2. Then u ∈ C0([0, T ], H4) ∩ C1([0, T ], H2) ∩ C2([0, T ], L2).

Proof. We define the sequence (uk)k by u0 = 0, and uk+1 = χ(uk), where χ is the
contraction given in (1.23) in Section 1. We know that there exists T ′ > 0 such that
uk → u in C0([0, T ′], H2) ∩ C1([0, T ′], L2) when n ≤ 4, and such that uk → u in
Ĥ = C0([0, T ′], H2)∩C1([0, T ], L2)∩Lq([0, T ], Lr) when n ≥ 5, where q = 2(2]−1)



38 EMMANUEL HEBEY AND BENOIT PAUSADER

and r = 2](n + 4)/(n + 2). We treat the case n ≥ 5. The case n ≤ 4 is much
simpler. We assume in what follows that n ≥ 5, p = 2] − 1, and let M > 0 be such
that for any k, the norm of uk in Ĥ is bounded by M . Given ε > 0 to be defined
later, taking T ′ small, T ′ ≤ 1, we can assume that for any k

‖uk‖Lq([0,T ′],Lr) ≤ ε. (6.6)

We let also R = ‖u0‖H4 + ‖u1‖H2 . We first prove by induction on k that for any k,
uk ∈ C0([0, T ′], H4) ∩ C1([0, T ′], H2) ∩ C2([0, T ′], L2), and that for any derivative
∂ = ∂α, α = t or α = 1, . . . , n, ∂uk ∈ Ĥ and

‖∂uk‖C0([0,T ′],H2) + ‖∂ukt ‖C0([0,T ′],L2) + ‖∂uk‖Lq([0,T ′],Lr) ≤ C(M,R) , (6.7)

where C(M,R) = C(R + R
n+4
n−4 + M) is some constant independent of k. This is

obvious when k = 0. Suppose our proposition holds true for some k ≥ 0. Then
uk+1 = χ(uk) satisfies equation (1.7) with k = f(uk) − muk = h1(uk) + h2(uk),
where h1 and h2 are the functions defined in the proof of Theorem 1.1 in Section
1. Since h1 is lipschitz, we get that ∂

(
h1(uk)

)
= h′1(uk)∂uk ∈ L∞([0, T ′], L2),

and since h2 satisfy (1.17), h2 is locally lipschitz, and, using (6.6), we obtain that
∂ (h2(uk)) = h′2(uk)∂uk ∈ L2([0, T ′], L

2n
n+2 ) with

‖h′2(uk)∂uk‖
L2([0,T ′],L

2n
n+2 )

≤ ‖|uk|
8

n−4 ‖
L
n+4

4 ([0,T ′],L
n(n+4)
4(n+2) )

‖∂uk‖Lq([0,T ],Lr)

≤ ε
8

n−4 ‖∂uk‖Lq([0,T ′],Lr).
(6.8)

Independently, we have that

‖h1(u0)‖L2 ≤ C‖u0‖L2 and ‖h2(u0)‖L2 ≤ C‖u0‖
n+4
n−4

H4 . (6.9)

Applying Lemma 6.1, estimates (6.8), (6.9), and our induction assumption, we get
that ∂uk+1 ∈ Ĥ and that

‖∂uk+1‖C0([0,T ′],H2) + ‖∂uk+1‖Lq([0,T ′],Lr) + ‖∂uk+1
t ‖C0([0,T ′],L2)

≤ C
(
R+R

n+4
n−4

)
+ CT ′‖∂uk‖L∞([0,T ′],L2) + Cε

8
n−4 ‖∂uk‖Lq([0,T ′],Lr)

≤ C
(
R+R

n+4
n−4 +M

)
,

(6.10)

provided that ε and T ′ are chosen sufficiently small. This proves (6.7). It follows
that (uk)k is uniformly bounded in L∞([0, T ′], H3). Besides, when 5 ≤ n ≤ 12, we
have that

‖h2(uk)‖L∞([0,T ′],L2) ≤ C‖uk‖
n+4
n−4

L∞([0,T ′],L
2(n+4)
n−4 )

≤ C‖uk‖
n+4
n−4

L∞([0,T ′],H
4n
n+4 )

≤ C‖uk‖
n+4
n−4

L∞([0,T ′],H3)

≤ C ′ (R,M) .

(6.11)

Furthermore, h2(uk) ∈ C0([0, T ′], L2). Indeed, letting, for t, s ≥ 0, gk(t, s)(x) = 0
if uk(t, x) = uk(s, x), and

gk(t, s) =
h2(uk(t))− h2(uk(s))

uk(t)− uk(s)
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otherwise, we get that, for t, θ ≥ 0,

h2(uk(t+ θ))− h2(uk(t)) = (uk(t+ θ)− uk(t))gk(t+ θ, t),

and consequently, by (1.17),

‖h2(uk(t+ θ))− h2(uk(t))‖L2

≤ ‖uk(t+ θ)− uk(t)‖
L

2(n+4)
n−4
‖gk(t+ θ, t)‖

L
n+4

4

≤ C‖uk(t+ θ)− uk(t)‖
H

4n
n+4

sup
[t,t+θ]

‖|uk|
8

n−4 ‖
L
n+4

4

≤ C‖uk(t+ θ)− uk(t)‖
4

n+4

L2 ‖uk(t+ θ)− uk(t)‖
n
n+4

H4 sup
[t,t+θ]

‖uk‖
8

n−4

H4

≤ C

(
sup

[t,t+θ]

‖uk‖
n2+4n+32
n2−16

H4

)
‖uk(t+ θ)− uk(t)‖

4
n+4

L2 .

(6.12)

Since uk ∈ L∞([0, T ′], H4) ∩ C0([0, T ′], L2), we get that h2(uk) ∈ C0([0, T ′], L2).
This proves the above claim. Now we can apply Lemma 6.1 thanks to (6.7) and
(6.12) and conclude that uk+1 ∈ C0([0, T ′], H4)∩C1([0, T ′], H2) with the property
that

‖uk‖L∞([0,T ′],H4) ≤ C (R,M) . (6.13)

When n ≥ 13, we proceed as follows. Namely we write that

‖h2(uk)‖L∞([0,T ′],L2) ≤ C‖uk‖
n+4
n−4

L∞([0,T ′],L
2(n+4)
n−4 )

≤ C‖uk‖
n+4
n−4

L∞([0,T ′],H
4n
n+4 )

≤ C
(
‖uk‖

16
n+4

L∞([0,T ′],H3)‖u
k‖

n−12
n+4

L∞([0,T ′],H4)

) n+4
n−4

≤ C ′ (R,M) ‖uk‖
n−12
n−4

L∞([0,T ′],H4)

(6.14)

and, as in the case where 5 ≤ n ≤ 12, see (6.12), we get that h2(uk) ∈ C0([0, T ′], L2).
Then we can apply Lemma 6.1. In particular,

uk+1 ∈ C0([0, T ′], H4) ∩ C1([0, T ′], H2)

and

‖uk+1‖L∞([0,T ′],H4) ≤ C ′(R,M)
(

1 + ‖uk‖
n−12
n−4

L∞([0,T ′],H4)

)
≤ C ′(R,M).

(6.15)

Finally, with (6.13) and (6.15), we get that for any n ≥ 5 and for any time t ∈ [0, T ′],(
uk(t)

)
k

is bounded in H4 uniformly in t and k. Since it converges to u(t) in H2, we
get that u(t) ∈ H4, and that u ∈ L∞([0, T ′], H4). Finally, u ∈ Ĥ∩L∞([0, T ′], H4)∩
W 1,q([0, T ′], Lr). Hence, proceeding as in (6.12), we get that h(u) ∈ C0([0, T ′], L2).
Applying once again Lemma 6.1 we see that u ∈ C0([0, T ′], H4) ∩C1([0, T ′], H2) ∩
C2([0, T ′], L2). This ends the proof of the proposition. �

An interesting corollary to the above developments, where we get smooth long
time solutions, is as follows.
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Corollary 6.1. Let n ≤ 7. For any Cauchy data (u0, u1) ∈ C∞0 (Rn) × C∞0 (Rn),
there exists a solution u ∈ C∞(R×Rn) of the cubic defocusing equation (0.1) with
f(u) = −u3. Besides, this solution is unique among all finite energy solutions.

Proof. First we prove recursively on k that for any integer k ≥ 2, there holds
that u ∈ C0(R, H2k) ∩ C1(R, H2(k−1)). By Proposition 6.1 this holds true when
k = 2 and, consequently, we have that u ∈ L∞loc(R, L∞). Now we assume that for
some k ≥ 2, u ∈ C0(R, H2k). Then, see for instance Tao [61, Appendix A], ∆ku3 ∈
C0(R, L2). It follows, see Lemma 1.1, that for any k, ∆ku ∈ C0(R, H2)∩C1(R, L2).
In particular, by induction, u ∈ C0(R, H2k) ∩ C1(R, H2(k−1)) for all k. We have
that

∂2u

∂t2
= −∆2u−mu− u3

so that utt ∈ C0(R, H2k) for all k. By induction, using, for instance, once again Tao
[61, Appendix A] for the cubic nonlinearity, it easily follows that u ∈ Ck′(R, H2k)
for all k, k′. The result follows. �

As a remark, when n = 8, the cubic defocusing equation (0.1) with f(u) = −u3

is critical and when n ≥ 9 it is supercritical.

7. A Segal’s type theorem

We aim here in proving a Segal’s type theorem for (0.1), and more precisely
that long time solutions of (0.1) exist when we adopt a weaker notion of solution
than the one in (1.4) and the nonlinearity in (0.1) is of defocusing type. Given
f ∈ C0(R,R), we say that u is a weak solution of (0.1) in R+ with Cauchy data
u0 ∈ H2 and u1 ∈ L2 if u ∈ L∞H2 ∩H1,∞L2, f(u) ∈ L1

loc(R+ × Rn), and∫ +∞

0

∫
Rn
u

(
∂2ϕ

∂t2
+ ∆2ϕ+mϕ

)
dtdx

=
∫ +∞

0

∫
Rn
f(u)ϕdtdx−

∫
Rn
u0ϕt(0)dx+

∫
Rn
u1ϕ(0)dx

(7.1)

for all ϕ ∈ C∞0 (R × Rn). Note that this implies that u ∈ C0(R, H1) ∩ C0
w(R, H2).

By extension, we say that u is a weak solution of (0.1) in R with Cauchy data u0

and u1 if u is a weak solution of (0.1) in R+ with Cauchy data u0 and u1 and if,
by changing t into −t, we get a weak solution of (0.1) in R+ with Cauchy data u0

and −u1. A solution of (0.1) in the sense of (1.4) is a weak solution of (0.1). A
weak solution u is said to be of finite energy, or a weak finite energy solution, if we
also have that F (u) ∈ L∞L1 and that E(u, ut) ≤ E(u0, u1) for almost every time
t, where E is as in (1.3). We prove here that the following theorem holds true. The
result for the wave equation in Euclidean space goes back to Segal [52].

Theorem 7.1. Let f ∈ C0(R,R) be locally Lipschitz and such that f(0) = 0.
Suppose that xf(x) ≤ 0 for all x ∈ R. Then, for any u0 ∈ H2 such that F (u0) ∈ L1,
and any u1 ∈ L2, there exists a weak finite energy solution of (0.1) in R with Cauchy
data u0 and u1.

Proof. It clearly follows from the assumption xf(x) ≤ 0 in the theorem that

F (x) = sgn(x)
∫ |x|

0

f (sgn(x)t) dt ≤ 0 (7.2)
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for all x, where sgn(x) = ±1 is the sign of x. We let (sk)k and (tk)k, to be chosen
later on, be sequences of positive real numbers such that sk → +∞ and tk → +∞
as k → +∞. Then we define (fk)k, where the functions fk : R→ R are given by

fk(x) = f(−sk) if x ≤ −sk ,
fk(x) = f(x) if − sk ≤ x ≤ tk , and

fk(x) = f(tk) if x ≥ tk
(7.3)

for all k. The fk’s are Lipschitz functions. We may then apply Theorem 1.1 and
Corollary 2.1 to get the existence of a solution uk in R+ of the equation

∂2u

∂t2
+ ∆2u+mu = fk(u) (7.4)

with Cauchy data u0 and u1. Let vk be the solution of (7.4) in R+ with Cauchy
data u0 and −u1. Let also uk be defined by uk(t, ·) = uk(t, ·) if t ≥ 0, and
uk(t, ·) = vk(−t, ·) if t ≤ 0. As is easily checked, if we still denote by uk the
map t→ uk(t, ·), then uk solves (7.4) in R with Cauchy data u0 and u1. Let Ek be
given by

Ek =
1
2

∫
Rn

(
(∆u0)2 +mu2

0 + u2
1

)
dx−

∫
Rn
Fk(u0)dx , (7.5)

where Fk is the primitive of fk given by Fk(x) =
∫ x
0
fk(t)dt. The conservation of

the total energy in Theorem 1.1 gives that
1
2

∫
Rn

(
(∆uk)2 +mu2

k + u2
k,t

)
dx−

∫
Rn
Fk(uk)dx = Ek (7.6)

for all k, where uk,t = (uk)t is the partial derivative with respect to t of uk. Now
we claim that we can choose (sk)k and (tk)k in (7.3) such that∫

Rn
Fk(u)dx→

∫
Rn
F (u)dx (7.7)

as k → +∞, for all u ∈ H2 such that F (u) ∈ L1. We prove (7.7) in what follows.
As a preliminary remark, we note that

Fk(u) ≤ 0 (7.8)

for all k and all u ∈ H2. Suppose now that f(x) → −∞ as x → +∞. Then we
can choose the sequence (tk)k such that f(tk) = maxx∈[tk,+∞) f(x) for all k. With
such tk’s we can write that if u ≥ 0, then Fk(u) ≥ F (u). If not the case, namely
if f(x) does not converge to −∞ as x → +∞, we choose the sequence (tk)k such
that −f(tk) ≤ tk for all k. Then, when u ≥ 0, Fk(u)− F (u) = 0 if u ≤ tk, while

Fk(u)− F (u) ≥ f(tk) (u− tk)
≥ −tk (u− tk)
≥ −u2

if u ≥ tk. In particular, in both cases, when f(x) → −∞ as x → +∞ and when
this is not the case, it follows from the above discussion that we can always choose
(tk)k such that for any u ∈ H2, and any k,

Fk(u) ≥ F (u)− u2 (7.9)

when u ≥ 0. In a similar way, if f(x)→ +∞ as x→ −∞, we choose the sequence
(sk)k such that f(−sk) is the minimum of f(x) for x ∈ (−∞,−sk] and all k, and
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if f(x) does not converge to +∞ as x → −∞, we choose the sequence (sk)k such
that f(−sk) ≤ sk for all k. Then, as above, we get that for any u ∈ H2, and any k

Fk(u) ≥ F (u)− u2 (7.10)

when u ≤ 0. Summarizing, we get with (7.8), (7.9), and (7.10) that for any u ∈ H2,
and any k,

F (u)− u2 ≤ Fk(u) ≤ 0 . (7.11)

Since we also have that Fk(u)→ F (u) almost everywhere in Rn, we get with (7.11)
that (7.7) holds true. Now, by (7.7), and since F (u0) ∈ L1, we can write that
Ek → E(u0, u1) as k → +∞, where Ek is as in (7.5) and E is the total energy
as in (1.3). In particular, up to passing to a subsequence, we can assume that
Ek ≤ 2E(u0, u1) for all k. By (7.6) and (7.8), we can write that

E0(uk, uk,t) = Ek +
∫

Rn
Fk(uk)dx

≤ 2E(u0, u1)
(7.12)

for all k and all t ≥ 0, where E0 is as in (1.3). By construction of the uk’s,
(7.12) holds also for t ≤ 0. By (7.12), and this remark, the uk’s are bounded in
H1([−T, T ]1+n) for any T > 0. Up to passing to a subsequence, we may there-
fore assume that for any T > 0, uk → u strongly in L2([−T, T ]1+n) and almost
everywhere as k → +∞. We may also assume that ∆uk ⇀ ∆u and that uk,t ⇀ ut
weakly in L2([−T, T ]1+n) as k → +∞. By Fatou’s lemma, we can write that for
almost every t,∫

Rn

(
1
2
(
(∆u)2 +mu2 + u2

t

)
− F (u)

)
dx

≤ lim inf
k→+∞

∫
Rn

(
1
2
(
(∆uk)2 +mu2

k + u2
k,t

)
− Fk(uk)

)
dx .

(7.13)

Then, by (7.13), we get that E(u, ut) ≤ E(u0, u1) for almost every time t, where E
is the total energy as in (1.3). This is the nonincreasing property of the energy we
ask for in the definition of weak finite energy solutions. Now we claim that

fk(uk)→ f(u) in L1
loc(R× Rn) (7.14)

as k → +∞. Given T > 0 arbitrary, we let KT = [−T, T ]1+n. Multiplying by uk
the equation (7.4) satisfied by the uk’s, and integrating over KT , we also get, after
some integration by parts, that∫

KT

|ukfk(uk)|dtdx ≤
∫ T

0

∫
Rn
|ukfk(uk)|dtdx

≤ −
∫ T

0

∫
Rn
ukfk(uk)dtdx

≤ −
∫ T

0

∫
Rn
uk

(
∂2uk
∂t2

+ ∆2uk +muk

)
dxdt

≤ −
∫

Rn
(uk(T )uk,t(T )− u0u1) dx+

∫ T

0

∫
Rn
u2
k,tdtdx

≤ 4
(

1√
m

+ T

)
E(u0, u1)

(7.15)
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for all k. Now we may use Egoroff’s theorem to get that (7.14) holds true. We let
ε > 0 be given, and let δε > 0 to be chosen later on. Since fk(uk) → f(u) almost
everywhere, we can write by Egoroff’s theorem that there exists a measurable subset
N of KT such that Vol(N) ≤ δε, where Vol stands for the euclidian volume, and
such that fk(uk)→ f(u) uniformly in KT \N . Using (7.15), we can write that∫

N

|fk(uk)| dtdx ≤
∫
N∩{|uk|≤D}

|fk(uk)| dtdx

+
1
D

∫
N∩{|uk|≥D}

|ukfk(uk)| dtdx

≤ Vol(N) max
[−D,D]

|f |+ 1
D

∫
KT

|ukfk(uk)| dtdx

≤ δε max
[−D,D]

|f |+
4
(

1√
m

+ T
)
E(u0, u1)

D

(7.16)

where D > 0 is arbitrary and k is sufficiently large such that D ≤ tk, |sk|. The same
upper bound holds for

∫
N
|f(u)| dtdx by Fatou’s lemma. In particular, by (7.16),∫

KT

|fk(uk)− f(u)| dtdx

≤
∫
N

|fk(uk)− f(u)| dtdx+
∫
KT \N

|fk(uk)− f(u)| dtdx

≤ 2δε max
[−D,D]

|f |+
8
(

1√
m

+ T
)
E(u0, u1)

D

+ Vol(KT ) ‖fk(uk)− f(u)‖L∞(KT \N)

(7.17)

for all D > 0 and all k is sufficiently large such that D ≤ tk, |sk|. Choosing D > 0
such that

24
(

1√
m

+ T

)
E(u0, u1) ≤ εD ,

and then δε > 0 such that we also have that 6δε max[−D,D] |f | ≤ ε, we easily get
with (7.17) that for k � 1 sufficiently large,∫

KT

|fk(uk)− f(u)| dtdx < ε .

Since ε > 0 is arbitrary, this proves (7.14). Now let ϕ ∈ C∞0 (R+ × Rn). By
multiplying (7.4) by ϕ and by integrating over R+ × Rn we can write that∫ +∞

0

∫
Rn
uk

(
∂2ϕ

∂t2
+ ∆2ϕ+mϕ

)
dtdx

=
∫ +∞

0

∫
Rn
fk(uk)ϕdtdx−

∫
Rn
u0ϕt(0)dx+

∫
Rn
u1ϕ(0)dx ,

(7.18)

and (7.1) follows from (7.14), (7.18), and the convergence of the uk’s in L2
loc(R×Rn).

By construction, when changing t into −t and u1 into −u1, we also get that (7.1)
holds true. This ends the proof of the theorem. �
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8. Stability

In this section, we discuss stability of smooth C4
b solutions of (0.1) following the

approach developed in Struwe [60] for the wave and Schrödinger equations. Here
we assume that f ∈ C1(R,R) is such that for any R > 0, there exists C = C(R) > 1
such that

− 1
C
F (w)− Cw2 ≤ −F (u+ w) + F (u) + f(u)w ≤ −CF (w) + Cw2 ,

|f(u+ w)− f(u)− f ′(u)w| ≤ −CF (w) + Cw2
(8.1)

for all |u| ≤ R and all w. Also we assume that f(0) = 0 and that xf(x) ≤ 0 for
all x in order to recover Segal’s theorem. A typical nonlinearity satisfying these
assumptions is the pure power nonlinearity given by f(u) = −|u|p−1u for p > 1.

Theorem 8.1. Suppose u ∈ C4
b ([0, T ]×Rn)∩C2([0, T ], H4) is a classical solution

of (0.1) with Cauchy data (u0, u1) and f satisfying (8.1). Let v be any finite energy
solution of the same equation with Cauchy data (v0, v1) ∈ H2 × L2. For t ≥ 0, let
w̃(t) = v(t)−u(t). There exists constants C1(u), C2(u) such that, for any t ∈ [0, T ],

E(w̃(t), w̃t(t)) ≤ C1e
C2tE(w̃(0), w̃t(0)). (8.2)

In particular, uniqueness for the Cauchy problem with Cauchy data (u0, u1) holds
true among weak finite energy solutions.

Proof. Let w = −w̃. We observe that w satisfies

∂2w

∂t2
+ ∆2w +mw + f(u− w)− f(u) = 0 (8.3)

in the sense of distributions. Let Su = ∆u + iut. We split the energy into several
parts by writing that

E(v, vt) = E(u, ut)− I + II , (8.4)

where

I = Re
∫

Rn

(
SuSw +muw − f(u)w

)
dx , and

II =
∫

Rn

(
1
2
(
|Sw|2 +mw2

)
− (F (u− w)− F (u) + f(u)w)

)
dx.

As a remark, t→ I(t) is a continuous function of t. Now, let (ηk)k, ηk ∈ C∞0 ((0, t)),
be an increasing sequence of functions such that for any k, 0 ≤ ηk ≤ 1 and ηk
converges almost everywhere to the characteristic function of the set [0, t]. In the
sense of measures on [0, t], we have that η′k ⇀ δ0 − δt vaguely as k → +∞. In
what follows, 〈·, 〉D denotes the duality product of a smooth compactly supported
function and a distribution in (0, t)× Rn. We have that

I(t)− I(0) = − lim
k→+∞

∫ t

0

η′k(s)I(s)ds

= − lim
k→+∞

∫ t

0

∫
Rn
η′k(s) (utwt + ∆u∆w +muw − f(u)w) dxds .

(8.5)
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Now, we assume that u = ũ ∈ C∞0 ([0, T ]× Rn). Then, we have that∫ t

0

∫
Rn
η′k(s) (ũtwt + ∆ũ∆w +mũw − f(ũ)w) dxds

= 〈η′kũt, wt〉D + 〈η′k∆ũ,∆w〉D +m 〈η′kũ, w〉D − 〈η
′
kf(ũ), w〉D

=
〈
d

ds
(ηkũt)− ηkũtt, wt

〉
D

+
〈
d

ds
(ηk∆ũ)− ηk∆ũt,∆w

〉
D

+m

〈
d

ds
(ηkũ)− ηkũt, w

〉
D
−
〈
d

ds
(ηkf(ũ))− ηkf ′(ũ)ũt, w

〉
D

= −
〈
ηkũt,

(
wtt + ∆2w +mw − f ′(ũ)w

)〉
D

−
〈
ηk
(
ũtt + ∆2ũ+mũ− f(ũ)

)
, wt
〉
D .

(8.6)

Then, using (8.3) and (8.6), we get

−
∫ t

0

∫
Rn
η′k(s) (ũtwt + ∆ũ∆w +mũw − f(ũ)w) dxds

=
∫ t

0

∫
Rn
ηk
(
ũt (f(u)− f(u− w)− f ′(ũ)w) +

(
ũtt + ∆2ũ+mũ− f(ũ)

)
wt
)
dxdt .

Now, by density, this remains true for u instead of ũ, and, with (0.1) and (8.1), we
find that

I(0)− I(t) = − lim
k→+∞

∫ t

0

ηk

∫
Rn

(f(u+ w)− f(u)− f ′(u)w)utdxdt

and thus that

|I(0)− I(t)| ≤ C
∫ t

0

∫
Rn

(
−F (w̃) + w̃2

)
dxds

≤ C
∫ t

0

E(w̃(s), w̃t(s))ds ,
(8.7)

where C = C(‖u‖L∞) depends on u. Moreover, since

w ∈ C0([0, T ], L2) ∩ C1
w([0, T ], L2) ,

then t 7→ ‖w̃(t)‖2L2 is C1, and

‖w̃(t)‖2L2 ≤ ‖w̃(0)‖2L2 + 2
∫ t

0

∫
Rn
w̃t(s)w̃(s)dxds

≤ ‖w̃(0)‖2L2 + C

∫ t

0

E (w̃(s), w̃t(s)) ds .
(8.8)

Independently, using (8.1), we get the following minoration of II in (8.4). Namely
that

II(t) ≥
∫

Rn

(
1
2
(
|Sw̃(t)|2 +mw̃(t)2

)
− 1
C
F (w̃(t))− Cw̃(t)2

)
dx

≥ 1
C
E (w̃(t), w̃t(t))− C‖w̃(t)‖2L2 ,

(8.9)
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while, at time t = 0 we have that

II(0) ≤
∫

Rn

(
1
2
(
|Sw̃|2 +mw̃2

)
− CF (w̃) + Cw̃2

)
dx

≤ CE (w̃(0), w̃t(0)) .
(8.10)

Now, since v is a finite energy solution, we obtain that

0 ≤ E(v(0), vt(0))− E(v(t), vt(t)) = −I(0) + I(t) + II(0)− II(t) . (8.11)

Then we use (8.9), (8.11), (8.7), and (8.10) to get that

E(w̃(t), w̃t(t)) ≤ CII(t) + C‖w̃(t)‖2L2

≤ C
∫ t

0

E(w̃(s), w̃t(s))ds+ CE(w̃(0), w̃t(0)).
(8.12)

An application of Gromwall’s lemma provides the conclusion. This ends the proof
of the theorem. �
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