AN INTRODUCTION TO FOURTH ORDER
NONLINEAR WAVE EQUATIONS
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ABSTRACT. We discuss fourth order nonlinear wave equations in Euclidean
space R™, n arbitrary. Given m > 0, the equations we consider write as
2
gT;L—kAQu—i-mu:f(u) ,

where f(u) is a nonlinear term. We investigate well-posedness, blow-up in
finite time, long time existence, and the existence of uniform bounds for global
solutions of our equations. The text is intended to serve as basic notes and a
possible source for an introductory graduate course on the subject.
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There has been an increasing activity in recent years on models involving non-
linear fourth-order partial differential equations. The very interesting book [49] by
Peletier and Troy presents several such models which we can find in the physics
literature. Fourth order equations have also been subject to an increasing activity
in conformal geometry through the analysis of the Paneitz and Branson-Paneitz
operators. We investigate in this paper fourth order wave equations in Euclidean
space R™ which we write into the form

Ou | a2y f(u) (0.1)
— u+mu= f(u .
ot? ’

where m > 0 is a positive real number, A = —divV is the Laplace-Beltrami oper-

ator, and f € C°(R,R) is a continuous function such that f(0) = 0. The model
case for (0.1) is given by the pure power nonlinearity f(z) = A|z|?~'2 where X € R,
A #0,and p > 1. At a first glance, (0.1) is a formal fourth-order extension of
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2 EMMANUEL HEBEY AND BENOIT PAUSADER

the classical Klein-Gordon equation. However it also inherits a Schrodinger struc-
ture which turns out to be of great help. Equations like (0.1) are also referred
to as Bretherton’s type equations or the beam equation. The original Bretherton
equation, written down for n = 1 by Bretherton [6], arised in the study of weak
interactions of dispersive waves. A similar equation for n = 2 was proposed in
Love [43] for the motion of a clamped plate. The equation was discussed in Levine
[38]. Recent developments in arbitrary dimension were established by Levandosky
[35, 36], Levandosky and Strauss [37], Pausader [46], and Pausader and Strauss
[47]. We also refer to Berger and Milewski [3], Berloff and Howard [4], Holm and
Lynch [23], Lazer and McKenna [32], Lin [40], and McKenna and Walter [44, 45]
for closely related references.

We address several questions in this paper such as well-posedness, blow-up in
finite time, long time existence, and the existence of uniform bounds for global
solutions of (0.1). As is well-known in control theory, the plate equation 0?u +
A%y = 0 has a Schrodinger structure because of the decomposition 97 + A? =
(0 + 1A)(0y — iA). Possible references in control theory, where the question of
the plate equation is addressed, are Burq [7], Fu, Zhang, and Zuazua [15], Haraux
[22], Jaffard [24], Lebeau [33, 34], Lions [41], Zhang [66], and Zuaza [67]. As is
easily checked, (0.1) inherits the same structure. We exploit this structure through
Strichartz estimates for the Schrodinger equation in Sections 1, 2, and 5 of the
paper. The local theory for energy-subcritical Schrodinger equations was developed
by Ginibre and Velo [18], and Kato [26]. A large and important part of the local
theory for energy-critical Schrodinger equations was later on developed by Cazenave
and Weissler [11, 12]. We transpose and adapt several of their arguments to (0.1) in
various places of the paper. Hyperbolic tools developed for Klein-Gordon equations,
in particular by Cazenave [8], are used instead in Sections 3 and 4. As a remark,
uniform bounds like the ones we get in Section 5 were originally proved in [8] for
Klein-Gordon equations. We proceed here with a slightly different approach using
the Schrodinger structure of the equation. Stability, following the approach in
Struwe [60], is proved in Section 8.

1. LocAaL EXISTENCE

We are concerned in this section with proving local existence of strong solutions
of (0.1) with given Cauchy data. We assume in what follows that f € C°(R,R)
satisfies that f(0) = 0 and that there exists C' > 0 such that

[fy) = f@)] < C QA+ [l + [yl |y — 2| (L.1)

for all 2,y € R, where p > 1 is arbitrary if 1 <n <4,1 <p <2 —1ifn > 5, and
28 = 2n/(n —4). Let H?> = H*2(R") be the Sobolev space of functions in L? with
two derivatives in L?, and let || - || = be the norm on H? given by

|l = /R” ((Au)? + mu?) dx . (1.2)

The exponent 2% is the critical Sobolev exponent for the embedding of H? into
Lebesgue spaces. For f as in (1.1), and for (u,v) € H? x L?, we define the total
energy F(u,v) and the kinetic energy Fo(u,v) by

1
Eo(u,v) = 3 (||u||%12 + H’U”%z) and E(u,v) = Eo(u,v) — Fu)dz, (1.3)
R’n
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where F is the primitive of f given by F(z) = [’ f(t)dt for all z € R, and || ||« is
the L9-norm in R™ for ¢ > 1. Equation (0.1) is energy-critical when p = 2f — 1 and
n > 5. Given ug € H? and u; € L%, we say that u is a solution of (0.1) in [0,T)
with Cauchy data ug and uq if

uwe C[0,T),H*) nC'([0,T),L*) N C*([0,T), H?)

2
%—FAQu—&—mu: f(u) in C°([0,T), H?), and (1.4)

Ult=0 = U0 , Utt=0 = U1,

where H~2 stands for the topological dual space of H2. By extension, if I is an
interval such that 0 € I, we say that u solves (0.1) with Cauchy data ug and uq
if (1.4) holds with I in place of [0,7). Such solutions are referred to as strong
solutions. We prove in Theorem 1.1 below that we do have local existence for
strong solutions of (0.1) with general nonlinear terms f as in (1.1), including the
energy-critical case. To do this we derive Strichartz type estimates for (0.1) from the
Schrodinger structure of the equation and Strichartz’s estimates for the Schrodinger
equation. In what follows we say that a pair (¢,r) is Schrodinger admissible, for

short S-admissible, if

2 n n

Syt 1.5

q + r 2 (1.5)
and rissuch that 2 <r < 40 ifn=1,2<r <+ ifn=2,and 2 < r < 2*
if n > 3, where 2* = -2 For 2 < ¢ < +o0, we say that a pair (¢,7) is beam
admissible, for short B-admissible, if 2 < r < 400 whenn =1,2,3, 2 <r < 400

when n = 4, and

2 n n—4

24 1.6

g 5 (1.6)
with 0 < r < 400 when n > 5. If (¢,r) is S-admissible and 2r < n, then (g, )
is B-admissible for rf = 5. Note that s = r# is the critical Sobolev exponent
for the embedding of H?*" into L*®, where H>" stands for the Sobolev space of
functions in L™ with two derivatives in L". More generally, given s € R and p > 1,
we let H>P = H*P(R") be the usual fractional Sobolev spaces in R™. Following
standard notations we let also H® = H*%?2, and for ¢ > 1 we let ¢’ be the conjugate
of ¢g. Local in time Strichartz type estimates for (0.1) are as follows. Global in time

Strichartz estimates are proved in Pausader [46].

Lemma 1.1. Let I C R be a bounded interval such that 0 € I, uy € H?, u; € L?,
and k € CO(I, H-2)N LY (I, L*) for some S-admissible pair (a,b). There exists a
unique u € CO(I, H*) N CY(1,L?) N C?(I, H=2) which solves the linear equation
0%u
2zt A*u=Fk (1.7)
in C°(I, H=?) with Cauchy data uj;—o = ug and Ugjy—o = u1. Moreover it holds
that w € LY(I, L") for any B-admissible pair (q,r), and that

lullcor,m2y + lluellco(r,z2y + llullpacr,r
< C (L4 1272) (V/Boluns ) + Il o 101

where |I| is the length of I, Ey is as in (1.3), and C > 1 does not depend on uy,
uy, k, and I.

(1.8)
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Proof. Welet v solve (1.7) in C°(I, H~*) with Cauchy data v;— = 0 and vy;—¢ = 0.
We let also w solve (1.7) in C°(I, H~?) when k = 0 with Cauchy data wy—o = uo
and wy;—o = u1. By standard Fourier analysis, v and w exist. Also we obtain
that v € COU(I, L) N CYI,H 2) N C?*(I,H™*) and w € C°(I,H?*) N CY(I,L*) N
C?(I,H?). Let ¥ = —ivy + Av and w = —iw; + Aw. We consider the linear
Schrédinger equation

iug + Au =k . (1.9)

As is easily checked, ¥ solves (1.9) in C°(I, H—*) with Cauchy data U= = 0, and
w solves (1.9) in C°(1, H~?) when k = 0 with Cauchy data wy_g = —iu; + Aug.
We may then apply the standard Strichartz estimates for the Schrédinger equation,
as stated for instance in Cazenave [9], to ¥ and w. We refer also to Keel and Tao
[28]. The Strichartz estimates for @ give that © € C°(I, L?) N L9(I, L*) for any S-
admissible pair (g, s), and that the L?L-norm of ¢ is controled by the L LY -norm
of k. This includes the choice of (g, s) given by ¢ = +o0 and s = 2. In particular,
it follows that v € CO(I, H?)NCY (I, L?) N C?(I, H~?%), and by considering the real
and imaginary parts of ¥ we also get that for any S-admissible pair (g, s),

[Av[lcor,z2) + [[vellcor,r2y + 1AV Laqr ey < Cllkll o (1,107 (1.10)

where C' > 0, independent of I, depends only on n, (a,b), and (g, s). As a remark
this implies that v solves (1.7) in C°(I, H=2) and not only in C°(I, H=*). By the
control on the L?-norm of v in (1.10), and since 4 ||v]|2, < 2||ve||2||v]| 2, we can
write that

[vllcocr,m2y + llvellco(r,z2y + 1AV Lar,Le)

(1.11)
< C (U [) 1kl o1 1
where C' > 0, independent of I, depends only on n, m, (a,b), and (g, s). Let (g,r)
be a B-admissible pair as in the statement of Lemma 1.1. When n < 4, and since
r > 2, we can write by the Sobolev embedding theorem for H?, and by the inclusion
H? c H*? for s < 2 and the Sobolev embedding theorem for fractional Sobolev
spaces when n = 4, that

lellzar,ery < CUM ol coqrazy < € (14 11172 [0lloor,zre) (1.12)

where C' > 0 depends only on n and (¢,7). When n > 5, we let s be given by
s =nr/(n+2r). Then (g, s) is S-admissible and s* = r. From Adams and Fournier

[1], and Stein [56] the L -norm of a smooth function u with compact support is
controled by a dimensional constant times the L®-norm of its Laplacian Au when
1 < s < n/2. With our choice of s, and by approximation, we may then write that

[llLar,Lry < CllAV[| Laqr Loy 5 (1.13)

where C' > 0 depends only on n and (g, 7). Combining (1.11), (1.12), and (1.13) we
get that

lolleoms + lleillosiee) + lollacary < € (14 12F2) [kl gy - (1:14)
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where C' > 0, independent of I, depends only on n, m, (a,b), and (g,r). Similarly,
the Strichartz’s estimates for w give that

|wl|cor,m2) + lwellcor,z2y + llwll La(r,zmy

< C (1+1I72) (Jurllgs + llwollz2 + | Auollz2) (1.15)

<C (1 + \1\3/2) VEo(uo, 1)

where C' > 1, independent of I, depends only on n, m, and (¢,r). By (1.14) and
(1.15), letting u = v+w, we get a solution of (1.7) in C°(I, H~2) with Cauchy data
U= = up and uy—g = uy which satisfies (1.8) for any B-admissible pair (g, 7).
Uniqueness of u follows from the remark that if u; and ug are two such solutions,
then @ = ug —uy solves (1.7) with & = 0 and Cauchy data i;—¢ = 0 and @y;—o = 0
so that @ = 0. This proves Lemma 1.1. O

As a remark, the proof of Lemma 1.1 also gives that u; € LI(I,L*) for any
S-admissible pair (g,s). Since 2 < s < 2% for such pairs, and v € C°(I, H?), we
also get from the Sobolev embedding theorem that u € L(I, L®). In Theorem 1.1
below we establish local existence of strong solutions for (0.1). Complementary
corollaries and remarks on the theorem, like well-posedness and a caracterisation
of the explosion in terms of norms and mixed-norms, are discussed in Section 2.

Theorem 1.1. Let f satisfy (1.1), ugp € H?, and uy € L?. There exists a unique
solution u of (0.1) with Cauchy data ug, uy defined on a mazimal time interval
[0,T). Furthemore, E(u,u;) = E(ug,u1) for all t € [0,T), where E is the total
energy as in (1.8), u = u(t), and uy = us(t).

In order to prove the theorem we let h € C°(R, R) be given by h(u) = f(u)—mu,
and rewrite equation (0.1) into the form
0%u 9
ﬁ + A“u = h(u) . (116)
As is easily checked, h also satisfies (1.1). We let n : R — R be smooth, with
compact support, and such that n = 1 in [—1,1]. We define h; = nh and hy =
(1 —n)h. Then, by (1.1),
h = hi+ ho , hy is Lipschitz , and
|ha(y) = ha(2)] < C (Jo[P~" + [y[P~") |y — 2|

for all z,y € R, where p is as in (1.1), and C > 0 is independent of z and y. We
also have that h1(0) = ha(0) = 0. For T' > 0 we define

Hr = C°([0,T], H) nC*([0,T),L?) , Hr = HrNC*([0,T),H™%)  (1.18)
and, when n > 5, we let also
Hr = Hy N L& ([0,T], L™) , (1.19)
where (g, 7y ) is B-admissible and given by ¢, = 2(2f — 1), r, = 28(n +4)/(n + 2).
For the reader’s convenience, we divide the proof of Theorem 1.1 into three parts
where we respectively prove existence, conservation of the energy, and uniqueness.
We start with existence. In the process we distinguish the subcritical case from the
critical case because of the different nature of the arguments we use in both cases

which, we refer to the remarks after the proof, provide different informations on
the lifespan and the energy of the solution.

(1.17)
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Proof of Theorem 1.1 — Existence. (i) We assume either that n < 4 or that n > 5
and p < 2% — 1 in (1.1). We prove that for any uy € H? and any u; € L? there
exists T' > 0 such that (0.1) possesses a solution u with Cauchy data ug, uq defined
on the time interval [0,T). In order to do this we let h, hy, and hs be as in (1.17),
and we consider (0.1) when written under the form of equation (1.16). Whenn > 5
we let (¢g,7) be the B-admissible pair given by ¢ = ¢,, and r = r,,, where ¢,, and r,
are as in (1.19), and for T > 0 we let H be the Banach space given by H = Hrp
if n <4, and H = Hy if n > 5, where Hp and Hp are as in (1.18) and (1.19).
Let w € H be arbitrary. Since hy is Lipschitz and h;(0) = 0, we can write that
hi(u) € COI, L?) while , by (1.17), ha(u) € CO(I, L**(+9). In particular, both
hi(u) and hg(u) are in C°([0,7], H=2). We also get that hi(u) € L'([0,T], L?)
so that hy(u) € L% ([0,T], L") for (a,b) the S-admissible pair given by a = 400
and b = 2. Similarly, by the Sobolev embedding theorem for H? when n < 3, and
by the inclusion H? C H*%?2 for s < 2 and the Sobolev embedding theorem for
fractional Sobolev spaces when n = 4, we have that ho(u) € L*([0,T], L?) when
n < 4. Moreover, we can write that
th(u)HLl([O,T],L2) < CT”“HCU([O,T],L?) for all n s 120
|2 (u)ll L1 (jo,77,22) < CTHUH%O([O,T],HQ) when n <4, (1.20)
where C' > 0 depends only on f, n and m. Without loss of generality, we may
assume in what follows that p > (2¢ — 1)n/(n + 2) in (1.1) when n > 5. Then
2n/(n+2) <r/p < 2 for the above choice of r. In particular, assuming that n > 5,
we get that there exists a S-admissible pair (c, d) such that pd’ = r. Since p < 28 —1,
we have that pc’ < ¢ and we let § > 0 be such that
1 1 6
ety (1.21)
By (1.17) and Hélder’s inequality we then get that ho(u) € L€ ([0, 7], L%) and that
()l o100y < CIE o gy oy < CT 0oy iy« (1:22)

where C' > 0 depends only on f, m, and n. We fix ug € H? and u; € L%. Also
we let (¢,d) be as above when n > 5, and let (¢,d) = (+00,2) when n < 4. For
u € H we consider the linear equation (1.7) with & = h(u) and Cauchy data u,
u1. The solution v = x(u) of this linear problem writes as the sum of the solution
of (1.7) with £ = 0 and Cauchy data (ug, u1), the solution of (1.7) with k = hq(u)
and Cauchy data (0,0), and the solution of (1.7) with k = hs(u) and Cauchy data
(0,0). By the linear theory in Lemma 1.1, by (1.20), and by (1.22), we can write
that v = x(u) belongs to H and that

vl < Cr (\/Eo (uo, u1) + [|h1(w)|| L1 (jo,77,22) + [[h2(u )||Lc’([o,T],Ld/))
< Cr (V/Boluo, ur) + Tlullpe + T ull,)

where § > 0 equals 1 if n < 4, and Cr = C (1 + T%/2) for some C > 0 depending
only on f, n, and m. In particular, we defined a map x : H — H and by (1.23),
we see that for any M > 2C\/Fo(up,u1), there exists T > 0 sufficiently small
depending only on f, n, M, Ey(ug,u1), and m, such that y preserves the close ball
B{(M) of center 0 and radius M in H, where C' > 0 is as in (1.23). For instance,

(1.23)
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by noting that § < 1, we get that x : B{(M) — B{(M) for T € (0, 1] such that

T < M —2C Eo(U07’U,1) Y
= 2C(M + M)

By (1.17) there exists C' > 0 depending only on f, m, and n such that

[ho(v) — hZ(U)HLc’ ([0,7],L4")
(1.24)
< C (Il oz oy + 1002 o7y iy ) 10 = ] e o712

for all u,v € ‘H. By (1.24)7 Holder s inequality, and the linear theory developed in
Lemma 1.1, we can then write that for u,v € B{(M),

() = x() e
C (Ilmn (o) = R (@)l 2 o ry,22) + ha(w) = b (@) o o210 )

< C(THU—uHH (1.25)

+ 7% (el ado,ry.ry + IolEatiozzy ) 0 = wlzoqory.er)
<C(T+2T° M"Y |lv — ullx

where 6 > 0is as in (1.21) if n > 5, § = 1 if n < 4, and C > 0 depends only on
f, n, and m. In particular, for M > 2C+\/Ey(ug,u1) and T > 0 sufficiently small
depending only on f, n, m, M, and Ey(ug,u1), the map x : B4(M) — B{(M) acts
as a contraction. By the Banach fixed point theorem we then get that x has a fixed
point in H. This proves the above claim that when n < 4, or when n > 5 and
p < 28 —1in (1.1), then, for any ug € H? and any u; € L?, there exists T > 0
such that (0.1) possesses a solution u with Cauchy data wug, u1 defined on the time
interval [0,T).

(ii) We assume that n > 5 and that p = 2¢ — 1 in (1.1). We prove that for any
ug € H? and any u; € L? there exists T > 0 such that (0.1) possesses a solution u
with Cauchy data wug, u; defined on the time interval [0,T"). As above we consider
(0.1) when written under the form of equation (1.16). We let (¢,7) and (a,b) be
the B-admissible and S-admissible pairs given by ¢ = ¢,, and r = r,, where g,, r,
are as in (1.19), and by a = 2 and b = 2n/(n — 2). In particular, r = b'(2% —1). For
T > 0, we let H be the Banach space H = Hr, where Hr is as in (1.19). Foru € H,
as in (i) above, we easily get that hy(u) € L*([0,T], L?), hao(u) € L ([0,T], L"),
and that
[ (u)ll 2 o,m),02) < CT||ullcoqo,r),22) Lo

o)l o210y < N s oy gy < Cllaomyiry - )
where p = 28 — 1, and C' > 0 depends only on f, n and m. Let U be the solution
given by Lemma 1.1 of the linear equation (1.7) with & = 0 and Cauchy data
Ujt—o = uo, Usjt—o = u1. In particular,

o*uU 9

BT + AU = (1.27)
in CO(R,H~2). For u € H, we let also v = x(u) be the solution of (1.7) with
k = h(u) and Cauchy data ug, u;. Then v writes as the sum of U, the solution
of (1.7) with k& = hy(u) and Cauchy data (0,0), and the solution of (1.7) with
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k = ha(u) and Cauchy data (0,0). By the linear theory in Lemma 1.1 we get that
X : H — H, and when taking into consideration the estimates (1.26) we can write
that

lellzoqo.m,ery < 1Ulzagomiey + Cr (Tl + lellfoomiry) — (128)
and that
ol < Cr (VEo(uo, ur) + Tlullze + el o 1. (1.29)

where p =28 — 1, Or = C(1 + T3/2)7 and C > 0 depends only f, n, and m. Given
d > 0 arbitrary, we let T5 € (0, 1) be such that [[U|| Le(jo,7],.~) < 6 for all T € (0, T5),
and for s > 0 and M > 0 we define the closed set Y7 ,, C H by

Y7y = {u € H s.t. ||u||Lq([07T]7L7‘) < sand |lullg < M} . (1.30)

By (1.28) and (1.29) we easily get that for 4, s > 0 sufficiently small, and M > 0
sufficiently large, there exists T € (0, Ts) such that x preserves Y7y For instance,

by choosing M > 2C+/Ey(ug,u1) and 6, s > 0 sufficiently small such that
2C0sP < s/4, 2CsP +s/4 < M — 2C+/Ep(ug,u1) , and 6 < /2, (1.31)

we get that x : Y7 ,, — Y7, if T € (0,75] is such that 2CTM < s/4. Inde-
pendently, by an inequality like (1.24) with (a,b) in place of (¢,d), by Holder’s
inequality, and the linear theory developed in Lemma 1.1, we can write that for
u,v € Y7 5,

[Ix(v) = x ()l
<C (||h1(11) — hi(w)|| Lo, 7),22) + [|h2(v) — h2(u)||La'([o,T],Lb’))

< (Tl = ullp + (Ielatomory + 1000,z ) 10 = llzaom,cn)
<C(T+257) o —ulls

(1.32)

where C' > 0 depends only on f, n, and m. In particular, for s, 7 > 0 sufficiently
small, the map x : Y7, — Y7, is a contraction. By the Banach fixed point
theorem we then get that y has a fixed point in H. This proves the above claim
that when n > 5 and p = 2¢ — 1 in (1.1), then, for any uy € H? and any u; € L?,
there exists 7' > 0 such that (0.1) possesses a solution u with Cauchy data wug, uq
defined on the time interval [0,T). O

As a remark, the above proof provides uniqueness of the solution in 'FlT—Spaces
when n < 4, as predicted by Theorem 1.1, and in Hyp N L% ([0, T], L™ )-spaces
when n > 5, where Hr, ¢y, and 7, are as in (1.18) and (1.19). From now on we
let T* = T*(ug, u1) stand for the maximal time of existence of the solution of (0.1)
with Cauchy data uy and u;. Assuming either that n < 4, or that n > 5 and
p < 2% —1in (1.1), the time for the contraction in point (i) of the above proof can
be chosen such that it depends only on f, n, m, and Fy(ug,u1). It follows that
when n < 4, or when n > 5 and p < 2¢ —11in (1.1), then Eo(u,u;) — +oo ast — T*
if T* < 400. By taking M = C(1+ /Ep(ug, u1)), with C' > 1, and assuming that
p > (28 —1)n/(n +2) in (1.1), we also get that when n < 4, or when n > 5 and
p < 2 —1in (1.1), then there exists K = K(f,n,m) € (0,1), depending only on
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f, n, and m, such that for any ug € H? and u; € L2,

K
T* > — (1.33)

(1 + Eo(uo,ul)) ’

where 6 = 1if n <4 and § > 0 is as in (1.21) if n > 5. Now let us assume that
n >5and p=2%—1in (1.1). Then we cannot assert anymore from (ii) in the above
proof that Eg(u,u;) — +oo as t — T if T* < +00. We prove instead, in Section
2, that ||ul|an (0,77,L7n) — +00 as T'— T*. On the other hand, for an analogue of
(1.33) in the critical case, it follows from point (ii) in the above proof that there
exists § > 0 small such that for any ug € H? and uy € L?, if [|U|| pan ([0, 77,172) < &
for some T € (0,1), then T* = T™*(ug, u1) is such that

oT

=
V 1+ Eo(ug,ur)

where U is the solution of the linear equation (1.27) with Cauchy data wy and u;.
Independently, it can be noted that in all cases, by the linear theory in Lemma 1.1,
see also the remark after the proof of Lemma 1.1, we do get that u € L] ([0,T*), L")

loc

and u; € L ([0, T*), L) for all B-admissible pairs (g,7), and all S-admissible pairs

loc
(a,b). Now we prove that the conservation of the energy in Theorem 1.1 holds true.

*

(1.34)

Proof of Theorem 1.1 — Conservation of the energy. We prove in what follows that
if u € Hy N L9([0,T), L") solves (0.1) with Cauchy data uo and u;, where Hr,
Gn, and 7, are as in (1.18) and (1.19), then, for any ¢ € [0,T], E(u,u;) = FE(ug, u1),
where E is the total energy as in (1.3), u = u(t), and u; = u(t). For this purpose
we consider (0.1) when written under the form of equation (1.16), and let E{, E’
be like Ey and F in (1.3) when m = 0 and F = H is the primitive of h given
by H(z) = [y h(t)dt for all x € R. The proof of the conservation of the energy
in Theorem 1.1 reduces to proving that E'(u,u;) = E'(ug,uq) in [0,T] if u € Hr
solves (1.16) with Cauchy data ug, u;. For e > 0 we let J. = (I +¢A)~!. Then, see
for instance Cazenave [9], for any s, J. is a contraction in H® , J. € L(H®, H**?)
with a norm of the order of e~ when & > 0 is small, and

| Jev —v|| g < e]|Av]gs (1.35)

for all v € H*T2. 1In particular, by (1.35), the density of H*™2 into H*, and
the contraction property of J. in H®, we easily get that J.v — v in H® for all
v € H® as € — 0. We also have that for any ¢ > 1 and any € > 0, J. is a
contraction of LY and J,v — v in L? for all v € L? as ¢ — 0. We let u € Hr
solve (1.16) with Cauchy data ug, ui, and set u. = Jou. Then, for any £ > 0,
u. € C[0,T), H*) N CY([0,T], H?*) N C%(]0,T], L?), and we also have that u. €
LA([0,T], L") when n > 5, where (g, r) is the B-admissible pair given by ¢ = 2(2%—1)
and r = 2%(n 4+ 4)/(n + 2). Moreover, u. solves the equation

0%u,

ot?

with Cauchy data J.up and J.u;. We let u.+ be the time derivative of u.. As is
easily checked, t — B} (u-(t),ue((t)) is C1, and by (1.36) we can write that

+ A%u. = J.h(u) (1.36)

E{ (ue(ta), ue(t2)) — B (ue(t1), ues(t1)) =/ta/nJ5h(u)J5utd:cdt (1.37)
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for all t1,t5 € (0,T). Since J.v — v in H? for v € H2, we also get that for any t,
Eg (ue(t), ue 1 (t)) — Eg (u(t), us(t)) (1.38)

as € — 0. Following arguments in Cazenave [9] we can write that for any 1 < a,b <
+00, and any v € L([0,T], L),

Jov — v in L([0,T], L) (1.39)
as ¢ — 0. Similarly, we also get that for any b > 1, and any v € C°([0, T, L),
Jov — v in C°([0,T), L?) (1.40)

as € — 0. By the Strichartz’s estimates of the linear theory in Lemma 1.1, see the
remark after Lemma 1.1, and since (2,2*) for 2* = 2n/(n — 2) is a S-admissible
pair when n > 3, we have that u; € L?([0,T], L?") when n > 3. Let hy = nh, and
ha = (1 —n)h be as in (1.17). We clearly have that hy(u) € C°([0,T], L?), that
ha(u) € C°([0,T), L?) when n < 4, and that ho(u) € L9([0,T],L*) when n > 5,
where s is such that (2° — 1)s = r for ¢ and r as above. By (1.39) and (1.40) we
can write that J.hy(u) — hy(u) in C°([0,T],L?) as € — 0, Jeha(u) — ha(u) in
C°([0,T],L?) as ¢ — 0 when n < 4, and that J.ho(u) — ha(u) in L9([0,T], L*) as
e — 0 when n > 5. We also have that Jou; — u; in C°([0,77],L?) as ¢ — 0, and
that J.u; — wu; in L2([0,T],L*") as ¢ — 0 when n > 3. Tt follows that for any
t1,t2 € (0,7),

to
/ Jhl( VJeurdzdt — / hi(u)uedzdt , and

to t2
/ / Joho(u) Joupdadt —>/ ho (u)urdxdt
n tl R’!L

ase — 0. Whenn > 5, and since ¢ > 2, we can write that ho(u) € L2([0,T], L*). By

noting that s = n2—47_‘2 is the conjugate exponent of 2*, and that u, € L?([0,T], L"),

it follows that ho(u)u; € L'([0,T],L'). By smoothing u with respect to the t-
variable, since u € C°([0,T], H?>)NC([0,T], L?) and u € LI([0,T], L"), we can also
prove that

(1.41)

ta
H; (u(ts)) dx — H; (u(ty)) d:v—/ / w)updxdt (1.42)
Rn R ty JRn
for all t1,t2 € (0,T), and for ¢ = 1,2, where, in this equation, H;(z) = fox hi(t)dt

for x € R. Combining (1.37), (1.38), (1.41), and (1.42), we get that

E' (u(tz), us(t2)) = B’ (u(tr), we(t1)) (1.43)

for all ¢1,t2 € (0,T). Since t — E’ (u(t), u:(t)) is continuous, it follows from (1.43)
that E'(u,ut) = E'(ug,u1) in [0,T]. As already mentioned, this ends the proof of
the conservation of the energy in Theorem 1.1. [

At this stage, in order to end the proof of Theorem 1.1, it remains to prove
unconditional uniqueness of the solution, namely uniqueness in Hr-spaces and not
only in Hrp N L ([0,T], L™ )-spaces. The argument we use below was developed
by Cazenave [9] for the Schrodinger equation. Related arguments can be found
in Colliander, Keel, Staffilani, Takaoka, and Tao [13], Furioli and Terraneo [16],
Furioli, Planchon, and Terraneo [17], and Kato [27]. We refer also to Tao and
Visan [64].
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Proof of Theorem 1.1 — Unconditional Uniqueness. Let f satisfy (1.1), ug € H?,
and u; € L2. We prove that if u, v are two solutions of (0.1) in Hy for some T > 0,
with Cauchy data ug and u;, where Hy is as in (1.18), then u = v in [0,7]. We
may here assume that n > 5 since we already know by point (i) in the existence
part of the proof of Theorem 1.1 that the result holds true when n < 4. In what
follows we say that a pair (a,b) is a beam’s intermediate pair if ¢ > 2 and

2 n n-2

-+ - = . 1.44

a + b 2 (1.44)
T), H=2) N L ([0,T], L") for some beam’s intermediate

Let T € (0,1], k € C°([0, ([0,T],L

pair (a,b), and u € C°([0,T], H?) N C*([0,T],L?) N C*([0,T], H~?) such that it
solves the linear equation (1.7) in C°([0,T], H2) with Cauchy data u(0) = 0 and
u¢(0) = 0. Then

HUHLOO([O,T],HI) + HU||L2([07T],LG) < C||k||La’([o,T],Lb’) (1.45)

for some positive constant C' > 0 which does not depend on k and 7. Such interme-
diate Strichartz type estimates follow from the Schrédinger structure of (0.1) and
Strichartz estimates in Besov spaces for the Schrodinger equation. We may use, for
instance, that

1Vl o o,71,852) < CllEN Lor (0,17,8751) » and
' - (1.46)
||UHL2([0,T],B;*{2 < CHkHLa'([O,T],BC’,;) ;

where C' > 0 does not depend on k and 7', ¢ is such that the pair (a,c) is S-
admissible, and the By . spaces are the standard Besov spaces. A possible refer-
ence for such estimates is Cazenave [9]. In particular, it follows from (1.45) that

||U||L2([07T],L2ﬁ) + ||u||L°°([0,T],L2) < CHkHLa’([O,T],Lb’) ) (1.47)

where C' > 0 does not depend on k and T. We let h, hy, and hg be as in (1.17),
and we consider (0.1) when written under the form of equation (1.16). We let
also T > 0 and u,v € Hp be two solutions of (1.16) satisfying the same Cauchy
data up and uy, where Hyp is as in (1.18). We set w = v — u. Then w € Hrp
and w solves the equation (3.9) with Cauchy data w(0) = 0 and w;(0) = 0, where
k = h(v) — h(u). For M > 0, we let E = E); be the subset of [0, 7] x R™ defined
by En = {|ul + |v]| < M}. We set ky = hi(v) — hi(u) + xg (hz2(v) — ha(u)), and
ko = xge (ha(v) — ha(u)), where xg and xpge are the characteristic functions of F
and E°. As is easily checked, k = k1 + ko, and for t € (0,7), we can write by
Holder’s inequality and (1.17) that k; € L'([0,t], L?), ke € L?([0,t], L**/ ("+9),
and

k1l o,,22) < Co(l 4+ MP2)t||w|| oo o,0,22) 5 (1.48)

%2l 22 (0,4, L2/ (nrry < 02||\I/||i;2([07T]7L2ﬂ)Hw”LQ([O,t],LQu) g
where ¥ = xge (Ju| + |v|), and C1,C2 > 0 do not depend on M and ¢t. The pair
(2, %) is the conjugate pair of (2,2%) which satisfies the intermediate condition
(1.44). We assume in what follows that ¢t < 1. For i = 1,2 we let w* be the solution
of the linear equation (1.7) with k = k; and Cauchy data w?(0) = 0, w{(0) = 0. We
have w? = w — w! and it follows from Lemma 1.1 that the w®’s are all in Hz. By
the Strichartz estimates in Lemma 1.1 we can write that

Hw1||Lcc([07t]7H2) S CMt”'LU”Loo([O’t],LQ) s (149)
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and by the intermediate Strichartz estimates (1.47) we can write that
2
Hw2||L°C([O,t],L2) + ||w2||L2([07t]7L2ﬁ < C”\I/”p ([0,7],L7") Hw”Lz ([0,],L2%) (1.50)

where C; > 0 does not depend on ¢, and C > 0 doeb not depend on M and t.
We let M > 1 be sufficiently large such that C||¥||?~ < 1. By combining

(1.49) and (1.50), we then get that

L°°( [0,T],L2%)

lwl| Lo (j0,41,22) < Crtllwl Loo(jo.4,22) (1.51)
where Cj; > 0 does not depend on ¢. In particular, by choosing ¢ > 0 sufficiently

small, we get that w = 0 in [0, t]. Iterating the argument it follows that w = 0 in
[0,T] and this proves unconditional uniqueness. O

Theorem 1.1 easily follows from standard semi-group arguments, as developed
in Cazenave and Haraux [10], when p < 2¢/2 in (1.1). When f is assumed to be of
class C', | f(u)] is dominated by |u[P~!, and p < 2f —1 is assumed to be subcritical,
Theorem 1.1 was established by Levandosky [36]. The approach in [36] is based
on the system representation of (0.1) and does not make use of the Schrodinger
structure of the equation. Theorem 1.1 only needs (1.1) and, in particular, allows
p to be critical.

2. RELATED RESULTS AND REMARKS

We prove in this section various results related to the local existence theorem,
Theorem 1.1 of Section 1. A first result which, together with Theorem 1.1 estab-
lishes well-posedness, is as follows.

Proposition 2.1. Let f satisfy (1.1), up € H?, u1 € L%, (ul)x be a sequence in
H? converging to ug in H? as k — +o00, and (ui)k be a sequence in L? converging
to uy in L? as k — +oo. Let T* = T*(ug,u1) be the maximal time of existence
of the solution of (0.1) with Cauchy data uy and uy, and T} = T*(ul,u}) be the
mazimal time of existence of the solution of (0.1) with Cauchy data u? and uj.
Then,

T* < liminf T} (2.1)
k— 400
and we also have that for any T < T*, uj, — u in C°([0,T], H*>) N C*([0,T], L?) as

k — +o0, where uy, is the solution of (0.1) with Cauchy data u9 and u},, and u is

the solution of (0.1) with Cauchy data uy and u;.

Proof. We assume here that n > 5. The proof works the same, with only slight
changes, when n < 4. With the notations of the proposition, we let U! be the
solution of the homogeneous linear equation (1.27) with Cauchy data U*(t) = u(t),
UL(t) = u(t). We let also T < T* be fixed arbitrary. By the linear theory in
Lemma 1.1 of Section 1 we can write that for any é > 0, there exists v > 0 such
that

24\ a4, L7y < 6/2 (2.2)
for all ¢t € [0,7], where ¢ = g, and r = 7, are as in (1.19). For o, u, € H?,
and 11, %) € L?, we denote by U and U’ the solutions of the homegeneous linear
equation (1.27) with Cauchy data g, @1, and @y, @}. Also we denote by @ and @’
the solutions of the nonlinear equation (0.1) with Cauchy data g, @1, and ag, @.
We fix ey > 0. By coming back to point (ii) in the proof of local existence in Section
1, and by the linear theory in Lemma 1.1, we get that there exists § > 0 small such
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that if |G —dol| = +[|41 — ]| 22 < eo, WA Lo, 79,1y < 65 and [ || oo 79,1y < O
for some T € (0,1), then @, 4’ € H, @ and @ solve (0.1) in C°([0, Tp], H~?2), and

1@ — a3 < C(llug — toll = + |17y — @]l r2) (2.3)

where C' > 0 depends only on n, H = Hy, N L([0,To], L"), Hr, is as in (1.18), and
Ty = 5T/ 1+ Eq(tig, ). We fix such a § > 0 and let Ag = maxjy 77 Eo(u, us) and
U =dv/2y/1+ Ay, where v is given by (2.2). We let also t; < t2 < --- <ty be such
that ¢, = 0, tx =T, [tiss —t;| < 7 foralli=1,...,N, and [0,T] = UN7 " [ti, tisa).
By combining (2.2) and (2.3), thanks also to the linear theory in Lemma 1.1 of
Section 1, we get that if the wuy’s of the proposition exist on [t;,t; + ¢] for some
e > 0 and some i = 1,..., N, and if it holds that ug(t;) — wu(t;) in H? and
ugt(t;) — ue(t;) in L? as k — +o0, where uy ¢ stands for the time derivative of ug,
then wuy, exists in [t;,¢; + 7] for k> 1, and

lur = ullco(e,,ti450,m2) + llue — uller (e, +00,22) — 0 (2.4)

as k — +00. Since t; = 0 we know by assumption that uy(t;) — u(t1) in H? and
that ug(t1) — w(t1) in L? as k — +oo. By (2.4) we can iterate from 1 to ty_1.
This clearly ends the proof of the proposition. O

Proposition 2.2 below is concerned with the explosion of the energy for low
dimensions and in the energy-subcritical case p < 2% — 1 when n > 5. For the
sake of simplicity, an additional condition on f we require in the second part of the
proposition is that there exist u € (0,m) and C' > 0 such that

F(z) < a2 4 ¢l (2.5)

for all x € R. Various f satisfy (1.1) and (2.5). Any f satisfying (1.1) and (3.1),
as in Sections 3 to b, satisfy (1.1) and (2.5). Proposition 2.2 states as follows. As
a remark, we do have that %(p — 1) < p+ 1 as soon as p < 2f — 1.

Proposition 2.2. Let f satisfy (1.1) with p < 2% —1 when n > 5. Let also
T* = T*(ug,u1) be the maximal time of existence of the solution u of (0.1) with
Cauchy data ug and uy. If T* < 400, then ||ullgz — 400 ast — T*, and if we
assume (2.5), then it also holds that ||ulpe — +o00 ast — T* for all g € [2,+00)
such that ¢ > p—1 when 1 <n < 4, and all q € [2,2%] such that q > T(p—1) when
n > 5.

Proof. Let f satisfy (1.1) . We know from Theorem 1.1 that the total energy E' is
conserved, and from the remark following the proof of existence in Section 1 that
if T* < +o00, then Ey(u,u;) — +0o as t — T*. Taking y = 0 in (1.1) we have that
|F(z)] < C(|z|* + |2[PT!) for all z. In particular, by the embedding H? C H*?
for s < 2, and the Sobolev embedding theorem for fractional spaces, we get that
lu|lgz — +o0 as t — T if T* < +o00. Now we assume that f also satisfies (2.5).
By (2.5), Holder’s inequality, conservation of the total energy, and the Sobolev
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embedding theorem, we can write that

[ull32 < 2E(ug,up) + 2 3 F(u)dx

1
< pllul3 +C (1 + ulzih)

I +1)6 +1)(1-6
B e +© (14 Jul &l 00

IA

N

H +1)6 +1)(1-0
Ll +C (14 full &7l 00)

for all ¢ > 0, where 1 < ¢ <p+1<¢, ¢ can be chosen arbitrarily large if n < 4,
qd =2n/(n—4)ifn>5,

0="T—", (2.7)
q

and C' > 0 does not depend on ¢. As is easily checked from (2.7), by choosing
¢’ > 1 sufficiently large we get that (1—0)(p+1) <2if¢g>p—1land1 <n<4. In
a similar way, when n > 5, we get that (1 —0)(p+1) <2if ¢ > ¥(p — 1). Coming
back to (2.6), since pp < m and |ull gz — +00 as t — T™, we necessarily have that
lullpe — 400 ast — T* if (1 —0)(p+ 1) < 2. This proves that ||u|p« — +o0 as
t — T* for all ¢ € [2,p+ 1] such that ¢ >p —1 when 1 <n <4, and ¢ > §(p — 1)
when n > 5. By Holder’s inequality, coming back to (2.6), we can also write that

lullZs < 2B(ug, ur) +2 / Flu)dz

< pllull3 +C (1+ulfis)
H +1)0) 1 (p+1)(1-6
Ll + € (14 ull B full 27007)

H 1)0 1)(1-6
Ll + €7 (14l Jul 2270 )

IN

IA

for allt > 0, where 2<p+1<gand (p+1)0 =2(¢q—p—1)/(¢ —2). As is easily
checked, (p+1)8 < 2, and it follows from (2.8) that ||ul/p« — +o0 as ¢t — T* for
all ¢ > p+ 1. This ends the proof of the proposition. ([

A corollary to Proposition 2.2 is as follows. The condition F(z) < Cz? in
Corollary 2.1 is automatically satisfied if f is Lipschitz, or if there exists C > 0
such that zf(z) < C’2? for all z. As a remark, the arguments in Segal [52], see
also Shatah and Struwe [55], can be transposed with basically no changes to (0.1).
In particular, see Section 7, (0.1) possesses a weak solution of finite energy defined
in the whole of R, with Cauchy data ug € H? and u; € L?, as soon as f(0) = 0,
f is locally Lipschitz, zf(z) < 0 for all #, and F(ug) € L. Corollary 2.1 states as
follows.

Corollary 2.1. Let f satisfy (1.1) with p < 28 —1 when n > 5, and let F be the
primitive of f as in (1.3). Assume there exists C' > 0 such that F(z) < Cx? for all
x. Then, for any ug € H? and uy € L2, the solution u of (0.1) with Cauchy data
ug and uy exists for all t € R.

Proof. By reversing time it suffices to prove existence for all t > 0. We fix ug € H?,
u; € L?, and let u be the solution of (0.1) with Cauchy data ug, u;. By (3.7) in
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lu(®)]12- = [[u(0)]22 +2 / / §)dsda

< [[u(0)|2 +2L+1/ Fo (u(s), us(s)) ds

for all £ > 0. By the conservation of the total energy in Theorem 1.1, and since by
assumption F(z) < Cz?, we then get with (2.9) that

Ep (u(t),u(t)) = Eo(ug,u1) — / F(up)dx + /n F (u(t)) dz

Section 3,

(2.9)

< Eo(ug,u1) — / F(up)dz + C u(t)gdx (2.10)
n R’n
t

< Eo (u(s),u(s)) ds + Cy
0

for all £ > 0, where C1,Cs > 0 are positive constants which do not depend on ¢. In
particular, by the integral form of Gronwall’s inequality, we get with (2.10) that

Eq (u(t), ue(t)) < Co (1 + Crte™) (2.11)

for all ¢ > 0, and by (2.11) we get that Ep (u(t),u:(t)) remains bounded on any
time interval [0,7]. By Theorem 1.1, this implies that u exists on the whole half
line R™, namely for all £ > 0. This proves the corollary. (]

The model case for the Breteherton equation (0.1) is given by the pure power
nonlinearity f(z) = Az[P~x, p > 1. In that case the equation writes as
2
?9? + A%u 4 mu = NulPtu, (2.12)
where A € R\{0}. The equation is defocusing when A < 0, and focusing when A > 0.
A straightforward consequence of Corollary 2.1 and of Proposition 2.1 is that the
defocusing nonlinear equation (2.12) is globally well-posed in C°(R, H*)NC* (R, L?)
for all p > 1 when n < 4, and all p € (1,2% — 1) when n > 5. The model equation
(2.12) has scaling invariance

1 t 1 T
u(t,x) - iu(ﬁﬂ *) ) uo(x) - Luo(f) )
Ap—1 A A Ap—1 A
) ) (2.13)
’LLl(x) — WU1(X) s and m — F .

p—1

In the energy-critical case, where n > 5 and p = 2% — 1, the scaling preserves energy.
The following proposition shows that for general energy-critical equations, where
n >5and p = 2% — 1 in (1.1), thus including the focusing case in (2.12), blow-up
of mass holds in mixed norms.

Proposition 2.3. Let n > 5 and f satisfy (1.1) with p = 2 — 1. Let ug € H?,
uy € L?, and T* = T*(ug,u1) be the mazimal time of existence of the solution of
(0.1) with Cauchy data ug and uy. If T* < 400, then

hm / [|lu

where q, and r, are given by q, = 2(2% — 1) and r,, = 2%(n +4)/(n + 2).

o dt (2.14)
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Proof. We prove (2.14) by contradiction. We assume in what follows that 7* < +oo
and that the limit in the left hand side of (2.14) is finite. A preliminary claim in
that case is that we also have that

sup Eo(u,u) < 400, (2.15)
[0,7)

where Ej is as in (1.3). In order to prove (2.15) we let ¢ > 0 sufficiently small
to be chosen later on, and let I; = [t;,tj41], 7 = 1,..., N, be a family of closed
intervals such that ¢; =0, t; < ;41 <t; +¢ for all j, and ty11 > T™*. We let also
h, hy = nh, and he = (1 —n)h be as in (1.17), and we consider (0.1) when written
under the form of equation (1.16). We can write that u = U; + Vi ; + Va; in I},
where Uj is the solution of (1.27) with Cauchy data u(t;) and wu.(t;) at t = t;, the
Vi,;’s are the solutions of (1.7) with & = h;(u) and Cauchy data 0 and 0 at t = ¢;
for i = 1,2, and fj = I; when j < N while In = [tn,T*). By the linear theory
in Lemma 1.1 of Section 1, and by inequlaities like in (1.26), we can write that for
any j,

[ull oz, 2y + 1wl cor, 12

#_
< 0 (/B ulty) w6) + el o + K000

(2.16)

where C' > 0 depends only on n, f, and m, and K is the left hand side in (2.14). By
assumption, K < +o00, and by choosing € > 0 sufficiently small such that Ce < 1,
it follows from (2.16) that (2.15) holds true. Now we let T' < T™* sufficiently close
to T™ to be chosen later on, and let Uy be the solution of (1.27) with Cauchy data
u(T) and w(T) at t = T, the V; p’s are the solutions of (1.7) with k = h;(u) and
Cauchy data 0 and 0 at t =T for ¢ = 1,2. By writing that Uy =u — Vi — Vo 1,
by the linear theory in Lemma 1.1 of Section 1, and by (1.26), it holds that

U Lan (17,74, L7n)

. i (2.17)
<C (”uHL%([T,T*),L"'n) +(T* =T)K' + Hu“%/Qn%[T,T*),LTn)) ;

where C' > 0 depends only on n, f, and m, and K’ = Sup[g,7+) Eo(u,uy) is finite by
(2.15). By (2.17) we then get that

A (| Lo (), 100) = 0 (2.18)

and it follows from (2.18) that for any ¢ > 0, there exist 7' < T* and ¢ > 0 such that
U Lan (7,75 4], 7y < 0. By (1.34) and (2.15) we then get that u can be extended
on an interval like [T, T* + ¢] for some T' < T* and ¢ > 0. A contradiction with
the definition of T*. This proves (2.14) and Proposition 2.3. O

A natural question on Theorem 1.1 concerns the existence of a lower bound for
the maximal time T of existence of a solution of (0.1) with Cauchy data ug, ui. As
is to be expected, the time of existence for critical equations should depend on the
profile of the initial data and not simply on the energy. In the subcritical case the
situation is easier to handle. We already know, see (1.33) after the proof of existence
in Section 1, that if p < 2 —1 when n > 5, and p > (2% — 1)n/(n 4 2) which we can
always assume without loss of generality, then there exists K = K(f,n,m) € (0,1),
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depending only on f, n, and m, such that for any ug € H? and u; € L?,

K
T* > — (2.19)

(1 + EO(“Oaul))T
where 6 = 1 if n < 4 and § > 0 is as in (1.21) if n > 5. We point out here that

more information than in (2.19) can be obtained if we assume that p < -7 in

(1.1) when n > 5. More precisely, we claim that if f satisfies (1.1), , where p > 1 is
arbitrary when n < 4 and p < n’j 7 When n > 5, and if f is kg times differentiable
at 0 and such that f(¥) (0) =0 for all 0 < k < ko and some kg < p — 1, then there

exist C' > 0 such that

C
T* > - if ko >0 and T* > Clloge| if ko =0 (2.20)
gho/2
for all e € (0, 3) and all Cauchy data ug € H? and u; € L? such that Eo(uo, u1) < €,
where T is the maximal time of existence of the solution of (0.1) with Cauchy data
ug, u. We prove (2.20) as follows. By the conservation of the energy in Theorem
L1, L Fy (u(t), ue(t)) = [on f (u(t)) ue(t)dz, and it follows from Hélder’s inequality

that if N(t) = Eo (u(t), us(t))"/?, then

N(t) < N(0) + / 1f (u(s)) [lz2ds (2.21)

for t > 0. By the assumption on f that f)(0) = 0 for all 0 < k < ko and some
ko < p—1, and by (1.1), we can write that | f(z)| < C (|z[** + |z|P) for all z € R,
where C' > 0 is independent of z. By the Sobolev embedding theorem we then
get that [|f (u(t)) ||z < C (N(t)*+ + N(t)P), where C' > 0 is independent of ¢.
Assuming that N(0) < 1, by continuity of N, we do get that N(¢) < 1 for ¢t > 0
small. Let tg > 0 be the upper bound of the set consisting of the positive ¢ wich
are such that N(s) < 1 for all 0 < s < ¢t. By (2.21), and according to the above
remarks, we can write that

N(t) < N(0) +2C /t N(s)*+1ds (2.22)
0

for all 0 <t < tg, where C' > 0 does not depend on t. Let ® be the function of ¢ in
the right hand side of (2.22). By (2.22), ®'(¢) < 2C®(¢)**! and N(t) < ®(¢) for
all 0 <t <ty. Assume kg = 0. Then &'(t) < 2CP(t), and we get that

d(t) < B(0)e2Ct < (/22! (2.23)

since ¢(0) = N(0) and Ep(ug,u1) < €. In particular, ®(¢) < 1, and hence N (t) < 1,
if 4Ct < |Ine|. By the definition of ¢y, this implies that 4Cty > |Ineg|, and since
to < T, (2.20) holds true when kg = 0. When ko > 1, since ®'(t) < 2C®(t)*o+!,
we get in a smiliar way that 2koCty > C’e*0/2 when Fy(ug,u;) < € and 2¢ < 1,
where C’ > 0 depends only on kq. This proves (2.20) when kg > 1. As a remark,
the bound p < - is the energy bound which makes that f(u) € L*([0,7], L?) and
that the material in Cazenave and Haraux [10] can be applied. On the other hand,
no conditions on p are required if n < 4.

Global well-posedness for the energy-critical defocusing wave equation was es-
tablished few years ago. The case of radially-symmetric initial data goes back to
Struwe [58]. The case of arbitrary initial data is due to Grillakis [19, 20], and
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Shatah and Struwe [53, 54]. Related references are Struwe [59], and Shatah and
Struwe [55]. Global well-posedness for the energy-critical Schrodinger equation was
established only very recently. The case of radially-symmetric initial data is due to
Bourgain [5] in dimension n = 3, see also Grillakis [21], and to Tao [62] in arbitrary
dimensions. The case of arbitrary initial data is due to Colliander, Keel, Staffilani,
Takaoka, and Tao [13] in dimension n = 3, Ryckman and Visan [50] in dimension
n = 4, and Visan [65] when the dimension n > 5. A recent very interesting survey
on the subject is Tao [63].

3. BLOW-UP IN FINITE TIME

We let f be such that (1.1) holds true. We also assume that there exists € > 0
such that

zf(z) > (2+¢)F(x) (3.1)
1.1)

for all x € R, where F' is the primitive of f as in (1.3). Various f satisfy (1.
and (3.1). The nonlinearity of the focusing model equation (2.12), given by f(z) =
AMz[P~tz where A > 0, satisfies (1.1) and (3.1) when p is as in (1.1). We aim
here in proving blow-up in finite time for solutions of (0.1). As a preliminary
result, following Cazenave [8], we claim that when f satisfies (1.1) and (3.1), then
Ft(z) = O(|x|**¢) as # — 0, and we can write that for any p < m, there exists
C > 0 such that

F(z) < gzz + C|zfP+ (3.2)

for all z € R, where F* = max (0, F'). We prove (3.2) as follows. We let h be the
function defined for x # 0 by h(z) = ||~ ?+%) F(x). Then,

W (x) = W (f(x) - (2 +)F(x)) (3.3)

for all x # 0, and it follows from (3.1) that h is non increasing in (—oo, 0) and non
decreasing in (0, +00). As an easy consequence we get that F'+(z) < Cy|z|** for all
x such that |z| < 1, where C; = max (F*(—1), F7(1)). In particular, the first part
of the above claim holds true. Integrating (1.1), we also get that there exists C > 0
such that [F(z)| < C (|z[* 4 |z[PT?) for all z. It follows that |F(z)| < Ca|az|P*! for
all z such that || > 1, where C5 > 0 does not depend on z, and we can write that

F(x)<C (|x|2+€ + |x|p+1) (3.4)

for all z € R, where C' > 0 is given by C = max (C,C2). As is easily checked, (3.2)
follows from (3.4) and the property that |F(z)| = O(|z|P™1) as |x| — +oo. This
proves the above claim that for any p < m, there exists C' > 0 such that (3.2) holds
true. Now, for u a solution of (0.1) with Cauchy data wug, u1, we let Ly = Ly, 4, be
the square L?-norm function defined by

Ly(t) = / u?(t)dx (3.5)
and we let also H = H,, ,, be the function given by

2(2+¢)
em

H(t) = Lg(t) - E(UO,Ul) . (36)
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An easy claim is that Ly, and hence also H, are C2-functions. We have here that

LL(t) = 2/ u(t)ug(t)dz , and
" (3.7)
L) = 2w (), a2 +2 [ 01
where (-, -) g2 g2 is the pairing between H~2 and H2. Moreover, by (3.6), H'(t) =
Li(t) and H”(t) = LY(t) for all t. When H(t) > 0 and H'(t) > 0 for some ¢t > 0,
or when H(t) > 0 and H'(t) > 0, we define T%(¢t) = T , (t) by

Up,U1

4 [(Ad+e)La(t)  (4+e)Lh(t)

THt)=t+ - — if Sp(t) <0, and
O =t+ 2\ mmn 2y o) <0, an
(3.8)
ALs(t)
TH(t) =t fS(t) >0
0=+ 2D itsuw 20,
where Sy (t) = #22@) — TTTZ’ Ly = Lyyu, is asin (3.5), and H = H,, 4, is as in

(3.6). By the conservation of the total energy in Theorem 1.1, and since E(u,v) > 0
if u =0, we get that E(ug,ui) > 0 if La(t) = 0 for some ¢ > 0. We also have that
Li(t) = 0if La(t) = 0. In particular, Lo(t) > 0 if H(t) > 0 and H'(¢t) > 0, or
H(t) > 0 and H'(¢t) > 0. By convention, we let Sg(t) = +oo if H(t) = 0. A
solution u of (0.1) is said to blow up in finite time if its maximal time of existence
T™*, also referred to as its lifespan, is finite.

Lemma 3.1. Let f satisfy (1.1) and (3.1), and let u be a solution of (0.1) with
Cauchy data ug,u1. Let H = Hyy ., be as in (3.6). Suppose there exists tg > 0
such that

H(to) >0 and H'(ty) >0, or

H(tg) > 0 and H'(ty) > 0. (3.9)

Then u blows up in finite time with a lifespan T* < T%(ty), where T* = Tﬁmul s
as in (3.8).

Proof. By combining (0.1), (3.1), and the conservation of the total energy in The-
orem 1.1, we get with (3.7) that

H"(t) > s/ ((Au)? + mu?) dz + (4 +¢) / uldr —2(2 + &) E(ug, u1)

8 : (3.10)

> emH(t) + (4 +¢) / uldr > emH(t)

Rn

for all ¢t. Let to > 0 be such that (3.9) holds true. By (3.10), since H" (t) > emH (t)

for all ¢, we can write that H(t) > 0 for all ¢ > t;. We also have that H'(t) > 0

for all ¢ > to. Once again by (3.10), we then get that H”(t) > (4 +¢)||lu¢|2. for all

t > 19, and we get with (3.7) that

Ly(t)* < 4llullZs Juell7-

4 (3.11)

< Lo(t)L5(t)

T 4+4¢

for all ¢ > to since Lj = H”. Let us assume from now on that ¢y is such that
H(tp) > 0 and H'(ty) > 0. We have that Lo(t) > 0 for all ¢ > t5. Let K be the
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function given by K (t) = Lo(t)~%/* for t > t;. Then

€ e+4
K'(t) = - Ly(t)* — La(t) LY (t 3.12
0= o (CrBO? - L0L0) (3.12)
and, by (3.11), we get that K" (¢) < 0 for all t > to. In particular, we can write that
K(t) < K(tog) + K'(to)(t — to) for all ¢ > g, and since we also have that K(t) > 0,
we get that

4L5(to)
EL/Q(t()) '
This proves that if to > 0 is such that H(tp) > 0 and H'(tp) > 0, then u blows
up in finite time with a lifespan T* bounded from above by the right hand side in
(3.13). We assume from now on that ¢ty > 0 is such that H(tp) > 0, H'(to) > 0,
and Sy (tg) < 0. As already mentionned, we can write that H(tg + s) > 0 and
H'(to + s) > 0 for s > 0. In particular, it follows from what we just proved that u
blows up in finite time with a lifespan 7™ bounded from above by

4L9 (to + S)
S

for s > 0. Since LY (t) > emH(t) for t > to, H(¢t) > 0 and H'(t) > 0 for ¢t > to, and
Ly (t) = H'(t) for all ¢, we have that

t<to+ (3.13)

T <to+s+ (3.14)

La(to + ) < La(to) + sLs(to + ) , and
Ly(to+5) > Lh(to) +s min H"(t) > Ly(to) + semH (to) . (3.15)

t€[to,to+s]
By combining (3.14) and (3.15), it follows that
T* <to+ T, (s) , where

B é ) AL (to) (3.16)
Tt (s) = (1 + 5> + e (LY (to) + semH (to))

Let so be given by

4Ls(to) __L5(to)
e(e+4)mH(ty) emH(to)

So — (317)
Then sg > 0 if Sy (tg) < 0. The function T, in (3.16) is decreasing up to sg, and
increasing after sg. By (3.16) we can write that if ¢y > 0 is such that H(tp) > 0,
H'(ty) > 0, and Sg(tp) < 0, then w blows up in finite time with a lifespan T*
bounded from above by T* < tg + T}, (s0), where s¢ is given by (3.17). Noting that
to+ T, (s0) is precisely the right hand side of the first equation in (3.8) when ¢ = ¢,
and that tg 4+ T3, (so) is less than the right hand side in (3.13), this ends the proof
of the lemma. O

Several situations where blow-up occurs can be obtained with Lemma 3.1. In
particular, Theorem 3.1 below holds true. Theorem 3.1 for Klein-Gordon equations
in domains of the Euclidean space was proved in Cazenave [8]. The negative energy
part in Theorem 3.1 was proved in Levine [38] in such a general setting that it
includes the present situation. Possible related references on such kind of results
are John [25] and Strauss [57].
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Theorem 3.1. Let f satisfy (1.1) and (3.1), and let u be a solution of (0.1) with
Cauchy data ug,u1. Suppose that one of the three following conditions (i)-(iii) is
satisfied :

(i) E(ug,u1) <0, or E(ug,u1) =0 and u # 0,
2+e

(i) (uo,u1) oy p2 > \/WE(UOWM

(ZZZ) (UO,Ul)L2><L2 + A(m)H(O) >0,
where E is the total energy as in (1.3), H = Hy,u, is as in (3.6), A(m) = /5" if
H(0) >0, and A(m) = /5" if H(0) < 0. Then u blows up in finite time.

Proof. Suppose first that F(ug,u1) < 0. By contradiction we assume that u exists
for all ¢ > 0. Since E(ug,u1) < 0, we have that H(t) > 0 for all ¢ > 0. By
(3.10), we also have that H"(t) > 2(2+¢€)|E(ug, u1)| for all ¢ > 0. It clearly follows
from such an inequality that H'(t) > 0 for ¢ > 1 large, a contradiction by Lemma
3.1. This proves that u blows up in finite time if E(ug,u1) < 0. Suppose now
that E(ug,u;) = 0 and that (ug,u;) #Z (0,0). Clearly H(¢t) > 0 for all ¢ > 0.
By contradiction we assume that w exists for all ¢ > 0. Then, by Lemma 3.1,
H'(t) <0forallt>0. By (3.10), H'(¢t) > 0 for all ¢t > 0, and H' is nondecreasing.
Since H(t) > 0 for all ¢ > 0, we get that H'(t) — 0 as ¢ — +o0o0. We have that
L4y(t) = H'(t) and LY (t) = H"(t) for all t > 0 (and even that Ly = H in the present
context). With (3.10) we can write that L5(t) > 2eEy(u,us) for all ¢ > 0, where
Ep is as in (1.3). In particular,

t2 1
Eo(u, ug)dt < 2—€\L’2(t1)| (3.18)
ty
for all t; < t9, and we get that there exists a sequence (ty)r such that ¢ — +oo as
k — 400, and such that Eg (u(tr),ut(tr)) — 0 as k — +o00. By the conservation
of the total energy in Theorem 1.1 we also have that E (u(ty),ut(tx)) = 0 for all k.
Now we can use (3.2) with 4 = m/2, and the Sobolev embedding theorem, to write
that there exists C' > 0 such that for all k,

0= F (u(te), u(tx))

%EO (u(tr), ue(tr)) — Cllulte) |2 (3.19)

(; + 0(1)) Eo (u(tr), ue(tr))

v

v

where o(1) — 0 as k — +oo. For k& > 1 sufficiently large, (3.19) is impossible.
This proves that w blows up in finite time if E(ug,u1) = 0 and (ug,u1) Z (0,0).
In particular, point (i) in Theorem 3.1 is proved. Now we assume that ug and u;
are such that the strict inequality in point (ii) of Theorem 3.1 is satisfied. Then
®(0) > 0, where ®(t) for ¢ > 0 is given by

1 2+¢

O (t) = SL(t) - mE(uo,ul) . (3.20)

By contradiction we assume that u exists for all ¢ > 0. From (3.7) we easily deduce
that

L4(1)] < Ly ()4 VEMEEE)

2
U 3.21
T yem(d+e) Em fllz, ( )
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for all ¢ > 0. By combining (3.10) and (3.21) we then get that

LY(t) > Jem(4d+¢e) |L5(t)| — 2(2 + €) E(uo, u1) (3.22)

for all ¢ > 0. Then, by (3.22), > /em(4+¢)®(t) for all t > 0, where ®(¢) is
given by (3.20). It follows from Gronwall S mequahty that

B(t) > B(0)eVeEmidtelt (3.23)

for all t > 0. Since we assumed that ®(0) > 0, we get with (3.23) that L5 (¢) — 400
as t — 4o0. In particular, Lo(¢) > 1 and L5(¢) > 0 for ¢ > 1 large, and we get a
contradiction with Lemma 3.1. Point (ii) in Theorem 3.1 is proved. It remains to
prove (iii). We let ug and u; be as in point (iii) of Theorem 3.1. By contradiction
we assume that u exists for all ¢ > 0, and we distinguish the two cases H(0) > 0
and H(0) < 0, where H = H,, ,, is given by (3.6). First we assume that H(0) > 0.
Then, by (iii) and Lemma 3.1, H'(0) < 0 and H(0) > 0. Since H"(t) > emH(t),
H' is nondecreasing in any time interval [0, ;) where H remains nonnegative, and
we can write that H(t) > H(0) + tH'(0) in [0,¢1). It follows that H remains
nonnegative at least up to the time t¢ = H(0)/|H'(0)|. By (iii), to > 1/2/(sm)
while, since H"(t) > emH (t), we get that

H(t) > H'(0) + em /0 "(H(0) 1 H'(0)s) ds .

= H'(0) (1 + %ﬁ) +emH(0)t

for all ¢ € [0,t0]. In particular, H'(tp) > 0, and since we also have that H(to) >

the contradiction follows from Lemma 3.1. This proves (iii) when H(0) > 0 nd
we may now assume that H(0) < 0. Then H'(0) > 0. Since H"(t) > emH (t), and
H is nondecreasing when H' > 0, we can write that H'(t) > H'(0) + temH(0) in
any time interval [0,¢1) where H' remains nonnegative. It follows that H' remains
nonnegative at least up to the time to = H'(0)/(em|H(0)|). By (iii), to > 1/2/(em)
while

H(t) > H(0) + /t (H'(0) + emH(0)s) ds
0

emH (0)
2

for all t € [0,tp]. In particular, H(ty) > 0, and since we also have that H'(¢9) > 0,

the contradiction follows from Lemma 3.1. Point (iii) in Theorem 3.1 is proved. O

(3.25)

= H(0) + tH'(0) + t2

By Lemma 3.1 we also get explicit upper bounds for the lifespan of v in Theorem
3.1. For instance, if E(ug,u1) < 0, then the lifespan T* of w is such that

T+ < (uo7ul)szLz I é (4 + E)HUQH%Q
T (24 9)|B(uo,ur)| e\ emlluoll7. — 2(2 +€)E(uo, u1)

(U0, U1) 2y 12 4 [4+e
~ (24 ¢)|E(ug,u1)] eV em ’

(3.26)

where E is as in (1.3), (uo,u1) 2,2 is the L2-scalar product of ug with u, and
|lug||z2 is the L2-norm of ug. We prove (3.26) as follows. Since E(ug,u;) < 0, we
have that H(t) > 0 for all ¢, where H = H,, ., is given by (3.6). If H'(0) > 0,
we immediately get (3.26) with Lemma 3.1. If not the case, H'(0) < 0. By
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(3.10) we have that H”(t) > 2(2 + ¢)|E(uo,u1)| for all t. Then we can write
that H'(t) > H'(0) + 2(2 + €)|E(uo, u1)|t, and if ¢y > 0 is such that H'(t) < 0 for
all t < tg and H'(tp) = 0, we get that

(w0, U1) 2y 2
(24 ¢)|E(ug,ur)|

Then H(tg) > 0, H'(tp) > 0, and by Lemma 3.1, u blows up in finite time with
a lifespan T* bounded from above by T%(tg), where T% is given by (3.8). Since
H'(t) < 0 for t < ¢y, we have that La(tg) < L2(0), and (3.26) follows from the
bound T* < T*(ty) and the bound (3.27) on ty. Similar upper bounds can be
obtained in the other cases of Theorem 3.1.

to < (3.27)

4. SMALL INITIAL DATA

We aim here in proving that if « is a solution of (0.1) with Cauchy data ug, u1, and
if Ey(ug,u1) is small, where Ej is as in (1.3), then u exists for all ¢ and the kinetic
energy Eg (u(t),us(t)) at all time is controlled by the kinetic energy Eg(ug,u1) at
time ¢ = 0. Theorem 4.1 for Klein-Gordon equations in domains of the Euclidean
space was proved in Cazenave [8]. The result was recently emphasized in Keel and
Tao [29].

Theorem 4.1. Let f satisfy (1.1) and (3.1). Then there exists § > 0 and a function
K € CYRT,R*) with K(0) = 0 such that for any (uo,u1) € H? x L? of kinetic
energy FEo(ug,u1) < 0, the solution u of (0.1) with Cauchy data ug,uy exists for all
t € R, and satisfies that Eqg (u(t),u(t)) < K (Eg(ug,uy1)) for all t.

Proof. By (1.3) and (3.2) with 1 = %, there exists C' > 0 such that for any u € H?
and any v € L2,

E(u,v) > Ey(u,v)— %/ w*de — C lulP T da
n R"L

Y]

1

—Ep(u,v) = C |u|PTdx .

2 R’Vl

By Sobolev embeddings it follows that there exists C; > 0 such that for any v € H?
and any v € L2,

1 P
E(u,v) > §Eo(u, v) — C’lEo(u,v)# . (4.1)
Letting y = 0 in (1.1) we get that |f(x)| < C (|z| + |z|P) for all x € R, where C > 0
is independent of z. By Sobolev embeddings and (1.3), integrating this inequality,
we also get that there exists Cy > 1 such that for any u € H? and any v € L2,

E(u,v) < CoEp(u,v) (1 + Eo(u,v)%v . (4.2)

Let hy,ho : RT — R be the functions of Ey(u,v) we have in the right hand sides of
(4.1) and (4.2). Namely, hq(t) = 2t—C1tP+D/2 and ho(t) = Cot(1+tP~1)/2). Both
hy and hy are C'-functions on RT. We have that hi(0) = ho(0) = 0, h}(0) > 0,
and h4(0) > 0. We let ;3 > 0 be such that h{(t) > 0 for all 0 < ¢ < 267, and let
02 € (0,01) be such that k4 (¢) > 0 for all 0 < ¢t < Jy, and ha(d2) < hy(d1). We let
h € CY(RT,R*) be such that h = k7' in [0, h1(26,)]. Let ug € H? and u; € L?
be such that Eg(ug,u1) < d2. By (4.2) we get that E(ug,u1) < h2(d2), and we can
write that E(ug,u1) < h1(d1). We also have that Ey(ug,u1) < d1. Let u be the
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solution of (0.1) with Cauchy data ug,w;. The function t — Eg(u, us) is continuous.
For ¢ > 0 small, Fy(u, us) < d;. We claim here that for any ¢ € [0,T7*), Eo(u,us) <
01, where T™* is the maximal time of existence of w. Indeed if Fo(u,u;) > 1 at
t = tg for some ty > 0, then there exists some possibly other time ¢; > 0 such
that Eo(u,ut) € [01,201) at ¢ = t1. By (4.1), since h; is increasing on [0, 24;], it
follows that hi(01) < hy (Eo(u,u)) < E(u,uy) at t = ¢1. By the conservation of
the total energy in Theorem 1.1, E(u,u;) = E(ug,u1). Since E(ug,u1) < hi(d1),
the contradiction follows. This proves the above claim that if Fo(ug,u1) < d2, then
Eo(u,u;) < 6y for all t € [0,7*). When n < 4, or p < 2 — 1 and n > 5, we then
get by Proposition 2.2 that T* = +o00, and thus that u exists for all £ > 0. In the
critical case, where n > 5 and p = 2% — 1, we let § > 0 be as in (1.34). Let also
d1 > 0 be such that Cv/d; < 6 for some C > 0, T < T* be such that

J
2 s,
V1+61
and U be the solution of the linear equation (1.27) with Cauchy data u(7T") and

ug(T). By the Strichartz estimates in Lemma 1.1 of Section 1, there exists Cy > 0,
independent of T', such that

UlLacr,zry < Cov/ Eo (u(T),u(T)) (4.3)

for all interval I C R* of length |I| < 1 such that T' € I, where ¢ = g, and r = 1,
are as in (1.19). Letting C = Cj it easily follows from (1.34) that, here again, in
the critical case, we must have that 7* = +o00 and that u exists for all ¢t > 0. Now,
by the conservation of the total energy, and by (4.2),

E(u,ut) = E(Uo, U1) S hQ (Eo(uo,ul)) (44)

for all ¢ > 0. We also have that hy (Eo(ug,u1)) < h2(d2) and ha(d2) < h1(2d1) when
Eo(up,u1) < d2. In particular, by (4.1) and (4.4), Eo(u,ut) < K (Egp(ug, u1)) for all
t >0, where K = ho hy is C! on [0, 2] and can thus be regarded as being defined
and C' on the whole of RT. It remains to prove similar estimates for ¢ < 0. For
up € H? and u; € L2, we let v be the solution of (0.1) with Cauchy data ug, —u;.
If Ey(ug,u1) < 02, we get with the above discussion that v exists for all ¢ > 0 and
that Eg(v,v:) < K (Eop(ug,u1)) for all t > 0. Let w be defined by w(t,-) = u(t,-)
ift >0, and w(t,-) = v(—t, ) if t < 0. Clearly, if we still denote by w the map
t — w(t,-), then w € C°(R, H?), w € C*(R, L?), W= = uo, and wyy—g = u1. As
is easily checked, since u and v solves (0.1) in R*, we also get that w € C%(R, H~2)
and that w solves (0.1) in R. This proves the Theorem. O

T+

In the spirit of Theorem 4.1, using slightly different arguments, a complete pic-
ture can be given in the particular case of the model equation (2.12) when p is
subcritical. We assume in what follows that p < 2% — 1 when n > 5 and consider
(2.12) for which f(z) = Mx|[P~lz. We let ug € H?, u; € L?, and u be the solution
of (2.12) with Cauchy data ug and u;. We already know by Corollary 2.1 that in
the defocusing case, where A < 0, u exists for all ¢t € R. By Sobolev embeddings,
and conservation of the energy, we also get that Eo(u,u:) < K (Fo(ug,u1)) for all
t, where K(s) = s + As®?T1/2 for some A > 0. In the focusing case, where A > 0,
we let

S = {(u,v) € H* x L? s.t. E(u,v) < & and I(u) > 0} ,

4.5
S — {(’U/,’U) c H2 % L2 s.t. E(u’v) < (50 and I(u) < O} s ( )
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where E is as in (1.3), I(u) = [jul|3: — )\||u||1;fi1, | - || g2 is as in (1.2), dg is given
by
2l
o= L DES (46)
2(p+ 1)Ar—1
and K, is the sharp constant for subcritical embeddings defined as the infimum
over u in H*\{0} of the ratio |lul|32/||ull7,+1. By Hélder’s inequality we have
that [|ul|per1 < |ull? Lt ||u||L2 , where 6 € (0,1) is given by 4(p + 1)8 = n(p — 1).
In particular, we can write that K, > m'~9K?, where K,, is the infimum over u
in H*\{0} of the ratio ||AU||L2/HU||L211 The exact value of K,, was computed in
Beckner [2], Edmunds, Fortunato, and Janelli [14], Lieb [39], and Lions [42]. It is
given by K,, = n(n—4)(n*>—4)7?T'(n/2)*/"T (n)~*/™, where I is the Euler function.
Following Payne-Sattinger [48] and Sattinger [51] we easily get that the following
proposition holds true.

Proposition 4.1. Assume p < 2% —1 when n > 5 and consider (2.12) with A > 0.
For ug € H? and uy € L?, let u be the solution of (2.12) with Cauchy data ug and
uy. Given 8y > 0 as in (4.6), the sets S and S in (4.5) are stable. Moreover, if
(up,u1) € S, then u ezists for all t € R, and

1 1 9 9
§/n 2dx —l—m/ ((Au)? +mu?) dz < E(ug, uq) (4.7)

for allt € R, and if (ug,u1) € S’, then u blows up in finite time.

As is easily checked, for any (u,v) € H? x L2, we do have here, in the model case,
that E(u,v) < Eg(u,v) and that if Eg(u,v) < 62, then I(u) > 0. In particular,
it follows from Proposition 4.1 that when f(z) = Mz|P~'z for some A > 0, and
p <28 —1if n > 5, then we can take § = min (50, (5(2)) in Theorem 4.1. Proposition
4.1 provides an explicit value for § in Theorem 4.1.

Proof. First we prove that S is stable and that if (up,u1) € S, then u exists for all
t € R, and (4.7) holds true for all t. Let w € H?, v € L?, and I be as in (4.5). A
first remark is that if I(u) > 0, then we can write that

1 A 1
E(u,v) = —/ ((Au)® + mu?) dz — 7/ |u[P Tt dx + f/ vide
2 n p“rl Rn 2 n (4 8)
p—1 2 2 1/ 2 '
> — .
_2(p+1)/n((Au) +mu)d:ﬂ+2 v dx

In particular, Eo(u,v) is bounded from above by £= ptl 7 E(u,v), and the estimate (4.7)
follows from (4.8) and the stability of S. Another remark is that if I(u) = 0, then

T
/’ (Au)® + mu®) dz = A lulPtdr > K, (/R |u|p+1dx) (4.9)

Rn
and we get a lower bound for the LPT'-norm of u if u # 0. In particular, by (4.8)
and (4.9), we can write that

E(u,v) > (212 +)1)/ lu \pHd:ch%/n v2dx

(p ) p+1
>2( +1)/ |u‘+d$2(50

(4.10)
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for all u € H*\{0} and all v € L? when I(u) = 0. Furthemore,

2 [
p

when ||ul|gz < §p. Now we prove the stability of S. Let (ug,u1) € S, and let u be
the solution of (0.1) with Cauchy data ug, u;. First we assume that E(ug,u1) < do.
The function t — I (u(t)) is continuous and nonnegative at ¢ = 0. By contradiction
we assume that there exists tg > 0 such that (u(to),us(to)) € S. By conservation
of the energy, E (u(to), ut(to)) = E(ug,u1) < do. It follows that I (u(tg)) < 0. We
let t1 € [0,%9) be such that I (u(t1)) = 0 and I (u(t)) < 0 for ¢ € (¢1,t0). By
(4.10) and conservation of the energy, we have that u(¢;) = 0, and since I > 0 in a
neighbourhood of 0 by (4.11), we get a contradiction. In particular, if (ug,u1) € S
is such that F(ug,u1) < do, then (u,us) € S for all t. By (4.8) we then get that
Eo(u, us) remains bounded, and it follows from Proposition 2.2 that u exists for all
t > 0. Now we assume that E(ug,u;) = dp. Suppose that for some time ¢y > 0,
I(u) = 0 at time ¢t = tg. Then either u(ty) = 0, and in that case I (u(t)) > 0 for
t > to close to to by (4.11), or u(ty) Z 0. When u(ty) #Z 0, we get by (4.10) that
u(to) = 0 and that u = u(to) is a minimizer for K,,. In particular, since I(u) = 0 at
t = to, we get that u = u(tp) is a stationnary solution of (0.1). By the uniqueness of
the solution in Theorem 1.1, it follows that (u,u;) = (u(to),0) for all t > t,. In that
case, I(u) = 0 for all £ > to, and it follows from the discussion that if E(ug,u1) = do
and if for some time tg > 0, I(u) = 0 at time t = ¢g, then I (u(t)) > 0 for t > tg
close to tg. In particular, the set consisting of the ¢t > 0 such that (u(t), us(t)) € S is
both open and closed in [0,7*). As a consequence, (u,u;) € S for all t. By (4.8), as
above, we then get that Fo(u,u;) remains bounded, and it follows from Proposition
2.2 that u exists for all ¢ > 0. Summarizing, S is stable, and if (ug,u1) € S then the
solution u of (0.1) with Cauchy data ug, u; exists for all ¢ > 0. Moreover, by (4.8),
we also have that (4.7) holds true for all ¢ > 0. If (ug,u1) € S, then (ug, —u1) € S.
By reversing time, u exists for all ¢ € R. Now we prove that S’ is also stable, but
with the property that if (ug,u;) € &', then the solution u of (0.1) with Cauchy
data up and u; blows up in finite time. The stability of S’ easily follows from the
conservation of the total energy in Theorem 1.1, (4.11), and the remark in (4.10)
that F(u,us) > o if I(u) =0 and u # 0. In particular, starting with (ug,u1) € S,
we get that (u,uy) € S’ for all ¢, where w is the solution of (0.1) with Cauchy data
ug, u1. It remains to prove that u blows up in finite time. Let Lo be as in (3.5).
By (3.7), since u solves (0.1),

Ly(t) = 2/ uldr — 21 (u) (4.12)

for all ¢ > 0. In particular, since (u,u:) € §’, we get that L(¢t) > 0 for all ¢t > 0.
If LL(t1) > 0 for some t; > 0, then L5(t) > Li(¢1) for all ¢ > ¢1, and if u exists
for t > t; sufficiently large with respect to t;, we get that H(t) > 0 for ¢t > iy,
where H is as in (3.6). In particular, u blows up in finite time by Lemma 3.1. We
may therefore assume in what follows that L5(¢t) < 0 for all ¢ > 0. In particular,
L, is nonincreasing and nonnegative, while L/ is nondecreasing and nonpositive.
By contradiction we also assume that u exists for all ¢+ € RT. Then, as is easily
checked, Ly(t) — o and L4(t) — 0 as t — 400, where o > 0, and we also get that
LY(tx) — 0 as k — 400 for a sequence (ty)g such that ¢, — +oo as k — +o00. By
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(4.12) it follows that
/ ug(tgp)?de — 0 and T (u(ty)) — 0 (4.13)

as k — —+oo. By the definition of K, and (4.6) we can write that if u € H?\{0} is
such that I(u) <0, so in particular if u € H? is such that I(u) < 0, then

p—1 < Jen (A% + mu?) da )

<
T2\ (3 L fulr )T

p—1 [ Afen uPtrde+I(u) \ 7 (4.14)
T2+ \ (A [y, Julprida) Y

p+1
—1

el

Sl
|
==

< M/ u[Pdz .
2(p+1) Jrn

Letting u = u(tx) in (4.14), it follows from (4.13) and (4.14) that

(SU S E(u(tk),ut(tk)) — %‘/Rn ut(tk)Qdaj — %I(u(tk))

< E(ulty), ue(tr)) +o(1)

for all k, where o(1) — 0 as k — 4o00. By the conservation of the total energy
in Theorem 1.1 we would get with (4.15) that E(ug,u1) > dp, a contradiction. In
particular, u blows up in finite time, and this ends the proof of the proposition. [I

(4.15)

In the critical case, where p = 2 — 1 when n > 5, it remains true that both
S and S’ are stable, that if (up,u;) € &', then u blows up in finite time, and
that if (ug,u1) € S, then Ey(u,u¢) remains bounded in [0,7). In particular, if
Eo(uo,u1) < &g, then Ey(u,us) remains bounded as long as w exists. Important
advances in the radially symmetric case for the focusing energy-critical Schrodinger
equation have been obtained in the recent Kenig and Merle [30]. Kenig and Merle
[31] also recently solved the case of the focusing energy-critical wave equation in
dimensions 3 <n < 5.

5. UNIFORM BOUNDS

We aim in this section in proving uniform energy bounds for solutions of (0.1)
which exist on the half line R*, or the whole line R. Such bounds have already
been proved in Theorem 4.1 and Proposition 4.1 in the case of small energy data,
with an explicit expression for the bound in Proposition 4.1. A consequence of the
mathematics developed in Section 3 is that we also have an explicit expression for
the bound when we restrict our attention to the L2-norm of the solution. More
precisely, the following proposition holds true.

Proposition 5.1. Let f satisfy (1.1) and (3.1), and let u be a solution of (0.1)
with Cauchy data ug,uy. If v exists on the half line RT, then

2(2 2 (ug,u1)p,
/ uldz < mE(uo,m) + min <H(0)+7 (Uoul)szL2> (5.1)
n em emt

for all t > 0, where H is as in (3.6), (uo,u1) 2,2 18 the L?-scalar product of ug
with uy, and E is the total energy as in (1.3).
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Another way we can write (5.1) in Proposition 5.1 is that if f satisfies (1.1) and
(3.1), and if w the solution of (0.1), with Cauchy data ug and u;, exists on the half

line R", then
/ u?dr < max <||U0|%2,

2(2+¢)

E(ug, ul)) , and
(5.2)

E(ug,uy) +

em (o, 1) emt

for all ¢ > 0, where E is as in (1.3), (ug,u1) 22 is the L%-scalar product of ug
with uy, and ||ug||z2 is the L?-norm of ug. The first equation in (5.2) is of interest
when ¢ > 0 is small. The second equation in (5.2) is of interest when ¢ > 0 is large.

Proof. We prove (5.2). By Lemma 3.1, H'(t) < 0 when H(t) > 0, and H'(t) < 0
when H (t) > 0. It follows that H(t) < H(0)" for all ¢ > 0. This proves that the first
equation in (5.2) holds true. By Theorem 3.1 we clearly have that F(ug,u;) > 0
while, by Lemma 3.1, H(0) < 0 if (ug,u1)r2xz2 > 0. In particular, the second
equation in (5.2) reduces to the first equation in (5.2) if (ug,u1)r2xr2 > 0. We
assume in what follows that (ug,u1)r2xr2 < 0. Since H'(t) < 0 when H(t) > 0,
and H'(t) < 0 when H(t) > 0, we can write that if H(ty) < « for some ¢y, > 0,
and some « > 0, then H(t) < a for all t > t¢. In particular, if H(t1) > « for some
t; > 0 and some « > 0, then H(t) > « for all ¢ € [0,¢1]. By (3.10) we have that
H"(t) > emH(t) for all t € [0,¢1]. Tt follows that

H'(t1) > H'(0) + tiema . (5.3)

By Lemma 3.1 we necessarily have that H'(¢;) < 0 since H(¢1) > 0. Therefore, by
(5.3), we get that a < —H'(0)/(emty), and we proved that if ¢ = ¢; is such that
H(t) > a >0, then o < —H'(0)/(emt). In particular, the second equation in (5.2)
holds true. This ends the proof of the proposition. [

In addition to Proposition 5.1, we also get a bound for the derivative of the
L?-norm of u. By Theorem 3.1 we may assume in Lemma 5.1 that E(ug,u1) > 0.
More precisely, we get that the following lemma holds true.

Lemma 5.1. Let f satisfy (1.1) and (3.1), and let u be a nontrivial solution of
(0.1) with Cauchy data ug,u1. If u exists on the half line R*, then

2(2 +¢)E(ug,u1)

2] = em(4 + ¢)

+ (1= Xqezt0y) L5(0)” (5.4)

for allt > 0, where

_ Vem(d +e)|uolli,

O 22+ o) E(ug, uy)

Ly is as in (3.5), E is given by (1.3), and X 14>+, 15 the characteristic function of
the interval [to, +00).

(5.5)

Proof. We let ® be the function given by (3.20) in the proof of Theorem 3.1, and
let ¥ =@ — L}. By (3.22) in the proof of Theorem 3.1,

D' (t) > /em(4 +e)P(t) (5.6)
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for all t > 0. Assuming that there exists t; > 0 such that ®(¢;) > 0, we get with
Gronwall’s inequality that

O(t) = D(ty)eV IR (5.7)

for all ¢ > ¢;. In particular, L,(t) — +o00 as t — +oo, and for ¢ > 1 sufficiently
large we get that La(¢) > 1 and L5(t) > 0. By Lemma 3.1 this is impossible. In
particular ®(¢) < 0 for all ¢ > 0. By (3.22) in the proof of Theorem 3.1 we also

have that
U'(t) < —\/em(4+¢)¥(t) (5.8)
for all t > 0. It follows form (5.8) and Gronwall’s inequality that

() < W(0)e"VeEmitelt (5.9)

for all t > 0, and we get with (5.9) that ¥(¢) < max (¥(0),0) for all ¢ > 0. Since
we also have that ®(¢t) < 0 for all ¢ > 0, it follows that

2(2 + €)E(’LLO, ul)
em(4+¢)

|L5(t)| < max <—L’2(0)»

< 2(2 + E)E(Umul)
N em(4+¢)

for all t > 0. Let now ¢ be as in (5.5). By (5.8) and Gronwall’s inequality we can
write that

(5.10)
+ L5(0)~

U(t) > W(tg)eV =mtte)lto=) (5.11)

for all 0 <t < tg. If ¥(ty) > 0 we get with (5.11) that U(¢) > 0 for all 0 < ¢ < ty.
In particular,

_ —2(2 + ¢)E(ug,u1)

em(4+¢)

for all 0 < ¢t < tg, and by integrating (5.12) on [0,to], we get with (5.5) that
La(tg) < 0. Since, by definition, Lo(t) > 0 for all ¢, this is a contradiction and
it follows that ¥(¢tg) < 0. By (5.8) and Gronwall’s inequality we then get that
U(t) < 0 for all ¢ > tg. Since we also have that ®(t) < 0 for all ¢ > 0, it follows
that

Ly(t)

(5.12)

2(2 + €)E(UO, U,l)

Lyt < 5.13

|Ls(t)] < T o) (5.13)
for all t > tg. We get (5.4) by combining (5.10) and (5.13). This ends the proof of
Lemma 5.1. O

We prove in the sequel that the uniform Ls-bounds of Proposition 5.1 extend
to bounds on the whole kinetic energy Ey for particular values of p in (1.1). Such
bounds for Klein-Gordon equations in domains of the Euclidean space were first
proved by Cazenave [8] with a nonlinear term growing at most like half the critical
Sobolev exponent for H'-embeddings. The kinetic energy associated to Klein-
Gordon equations controls the H'-norm in 1 + n dimensions. For (0.1) we may
regard the spatial Sobolev space H? as a subset of the spatial Sobolev space H!
and then restrict ourselves to controlling the sole H'-norm in 1 + n dimensions.
This loss of control on the derivatives when passing from H? to H' has no cost
when n = 1, a dimension where we still get with this approach the full range p > 1
n (1.1), but it has a cost when n > 2 by imposing a condition like p < 3 in (1.1).
Lemma 5.2 below allows us to recover the full range of exponents when n = 2,
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namely p > 1 arbitrary in (1.1) when n = 2. It also enables us, see (5.21) below, to
get better exponents than 3 when n = 3,4, and to get better exponents than 2 /2
when n > 5.

Lemma 5.2. Let I C R be an interval and w € H*(I, L*) N L*(1, H?) be such that

/1 Fo(u(s), uy(s))ds = N2 (5.14)

for some N > 0. Then

1 2
2 2
[l zoe (r,p2) < 2 < T \/ﬁ) N? and

1
2 2
||VUHLOO(I7L2) §2(2+I|\/TTL>N ,

where |I| < +oo is the length of I.

(5.15)

Proof. Without loss of generality we may assume that I is bounded. First, we
suppose that u € C1(I, H?). Since N is finite, by the mean value theorem, there
exists some time tg € I such that

Eo(ulto), u(to)) = % ,

where N is as in (5.14). Then,

2

2N
[ utto,pldy <27 and
. mi)
. (5.16)
/ \Vu(to,y)\zdy = / u(th y)Au(t07y)dy < W

Now, let t € I. By time symmetry, we can suppose ty < t. We bound the gradient
norm by writing that

t
/ \Vu(t,y)2dy =/ (IVu(to,y)l2 +2 Vut(&y)Vu(s,y)dS) dy
R R

to

t
S/ \V“(tOvy)\Qdy—2// uy(s,y)Au(s,y)dyds  (5.17)
Rn to JR

1
<22+ )N2,
(7

where we have used (5.16) in the last inequality. We bound the L? norm similarly
by writing that

/n lu(t, y)[*dy = /Rn <|u(to,y)|2 +2/t: ut(s,y)u(s’y)d'S) dy

1 2
<2 ——+— | N?
<2+ v) M
where, again, we have used (5.16) in the last inequality. Then (5.15) follows from
(5.17) and (5.18) in case u € C1(I,H?). In case u € H'(I,L?) N L?(I,H?), the
result follows by density. O

(5.18)
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Corollary 5.1. Letn > 3, I C R be an interval such that |I| > 1, and (a,b) satisfy
(1.44) with a > 6 if n = 3,4, and a > 2 if n > 5. Let uw € H*(I,L*) N L*(I, H?)
satisfy (5.14). Then

lullpar,oy < CON, (5.19)

where C' does not depend on u, a and I.

Proof. Assuming that n > 5, we get from Lemma 5.2 that the bound holds true
for the endpoints (a,b) = (00,2*) and (a,b) = (2,2¢). Then (5.19) follows by
interpolation. Applying the same strategy when n = 3,4, we only have to prove
(5.19) in the case a = 6. In this case, for u € H?,

2 1

[l jong < Cllull g < Cllullgallull (5.20)

and (5.19) follows from (5.14), (5.15) and (5.20). This neds the proof of the corol-

lary. O

For n > 3, we define p,, by

n+6

= . 5.21

Po= g (5.21)

As is easily checked,
1
)

pn=2"—140(
n

)

as n — 400, and p, > 2%/2 when n > 6 with equality if and only if n = 6. Theorem
5.1 states as follows. Any p > 1 in (1.1) is allowed in the theorem when n = 1,2.

Theorem 5.1. Let f satisfy (1.1) and (3.1) with p = p, when n > 3, where p,
is as in (5.21). There ezists K € CY(RT,R") with K(0) = 0 such that if u is a
solution of (0.1) with Cauchy data ug,u1, and if u exists on the half line R, then

Eo (u(t), ut(t)) S K (Eo(UO,lﬂ)) (5.22)

for allt > 0, where Ey is given by (1.8). Moreover, there is a time to > 0 such that
Eo (u(t),u(t)) < K (E(ug,u1)) for all t > tg, where E is given by (1.3).

Proof. First we prove the theorem assuming that n = 1,2 and p is arbitrary. By
(3.10) we can write that

Lg(t) > 2€E0(U, ut) - 2(2 + E)E('LL(], ’Lbl)
for all t > 0, where Ly is as in (3.5). Let ¢y be as in (5.5). By Lemma 5.1 and the

above inequality we get that

| B, un(s)) ds < 5 (Tylaa) = L5(00)

1

+ (1 + i) E(uo,u1)(ts — t1)

< 2(2 +¢)E(ug,uq) n 1
ev/em(4d+¢) €

+ (1 + i) E(uo,u1)(ts — t1)

(5.23)

(1 - X{tlzto}) |L/2(O)|
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for all t; < t5. Let h € CY(Rt,R*t) be given by h(X) = AX(1 + X®~1/2) for
X >0, where A = Cy is as in (4.2), and S € C'(RT,RT) be given by

S(X) = (1 + i) <1 + Em(24+8)> h(X)+ %X (5.24)

for X > 0. As is easiliy checked, S(0) = 0. Moreover, by (3.7), (4.2), and (5.23) we
can write that

t+1
/ Eo (u(s),u(s))ds < S (Eo(ug,uq)) for allt >0, and
t (5.25)
/ Eo (u(s),u(s))ds < S (E(ug,uy)) for all t > tg .

Now, if p+1 < 2*, conservation of energy, (5.15) and (5.25) and Sobolev’s inequality
ensures that Fo(u,u:) remains bounded since

Eo(u(t), us(t)) = E(u(t), us(t)) +/ F(u(t))dz

n

< E(ug, u1) + C (Ju(®)l3 + lu(t)|:") (5.26)
< E(ug,u1) + C (F + FPTH) ,

where I' stands for S (Ep(ug,u1)) if ¢t < to, and S (E(ug,u1)) if ¢ > to. This
settles the cases n = 1,2. At this point it remains to treat the limit case when
p=(n+6)/(n—2) and n > 3. We treat first the case of high dimensions n > 5,
in which case, we can rely on the Strichartz estimate of Lemma 1.1. We let (a, b)
be the S-admissible pair defined by a = 2, b = 2*. We let also ¢ = 2p and define
r,¢ to be such that (g,r) is B-admissible and (g, ¢) is B-intermediate in the sense
of (1.44). By Corollary 5.1, and by (5.25), we can write that

t+1 1/q
(/ ||u||<gcds> <CVT (5.27)
t

where C' > 0 does not depend on t. Let us now fix ¢ > 1. By (5.25) there exists
t1 <t <t;+ 1 such that

Eo(u(ty), ue(t1)) <T, (5.28)
where T is defined as in (5.26). Let hy and hg be as in (1.17) in Section 1. By the
linear theory in Lemma 1.1 of Section 1, since hy is Lipschitz and hg satisfy (1.17),
we can write that for any interval I = [0, 0'] of length less than 1,

lullar,zrmy <C (\/ )+ lha(w)l[r(r,z2) + [ha(u )||La’(1,Lb’))

< C (VA@) + lullzacr,nn) + Nl o) )

where A(t) = Ep (u(t), ut(t)), and C,Cs > 0 do not depend on t and j. Now we let
to =t <tz <---<tgyr =t1+ 1 be a partition of [t1,¢1 + 1] such that

1 < b
1c. = < ullfe La( [t“t1+1] Le) = 20

(5.29)

fori=1,...,k, where Cs is the constant appearing in inequality (5.29). Then

k< ((4c)7 ovr)’
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By Holder’s inequality, we get that

ull}

UHLm’([,LT) (5.30)

for any bounded interval I C R. Noting that ¢ = pa’, it follows from (5.25), (5.29)
and (5.30) that, for any j,

”u”Lq([t 1], L) < C (\/ \l I'+ ||uHLq([t 1], Le) ||UHL‘I([t tiv1ls L’))
< O (/M) + 2T+ oy iyir
= s J m 20, ([ts,t5+1],.L7)
2
<C <1/A(tj) +4/ mF)
(5.31)

where C' > 0 does not depend on j and t. Applying the Strichartz estimates again,
it follows from (5.31) that

sup < C <\/7 \/71_‘—’_ ||UHL‘Z [t],t +1] Le ||u|Lq([tj»tj+1]7L"')>
sty tyanl
2
ey

Lpa’ [ Lpb — Hu”Lpa (I Lr

(5.32)
where, again, C' > 0 in (5.32) does not depend on j. In particular,
2
\VA(tj41) <C (\/A(tj) +4/ F)
m
and, as a consequence, we get that
A(t) < sup A(s)
Se[thtl—‘rl] (533)

< CF g+1

In particular, we get with (5.33) that the theorem holds true when p = (n+6)/(n—2)
and n > 5. Now, at this point, we assume that n = 3,4 and we use the following
Strichartz estimates that can be deduced from the original one in much the same
way as the intermediate Strichartz estimates in (1.45). Let u € C°([0,7], H?) N
C1([0,T],L?) be a strong solution of (1.7) where T < 1 and k € C°([0,T], H=?).
We let also (g, 7) be such that 2 < ¢,r < oo and

2 n_ 2n—5

qg r 4
and (a, b) be such that 2 < a,b < co and

2 n_ 2n-3

a b 4
Then there exists C' > 0 independent of u such that

lllzago ey < € (VEoluosun) + I lzaom,eo) + kel

La,([O)T]’Lb,)) (5.34)
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for every decomposition k = ki + ka. In order to prove (5.34) we write that
u = u1 + ug, where wu; satisfies (1.7) with initial data (up,u;) and k = k;, and
ug satisfies (1.7) with zero initial data and k& = ko. On what concerns u; we can
use the Strichartz estimates (1.8), while for us we proceed in the same way we did
when proving (1.45), except that we replace (1.46) by

[[o]

190 20,51, < M o

Ly < Ol o pr ) and
omesdy S Ol s )

where again ¢ > 1 is such that (a, ¢) is S-admissible. Now, we proceed as in the case
n > 5. Wefind ¢; € [t—1,¢] such that (5.28) holds true. Then, we split [¢1, 1 +1] into
disjoint intervals [t;, t;11]. On each interval [t;, ¢;11] we use the Strichartz estimates
(5.34) as above, with g =r =4(n+2)/(2n—5) and a = b=4(n+2)/(2n — 3). We
get that

||U||Lq([ti,t,v+1]an

< € (VAT + 1 ()21, 2+ D20 Lo )

< C (VAW + VL) + Ol s, 1w (5.36)
<C <\/7 + \F) + CSHu”p 2(n+2) 1wl ot biga) xRR) -

n=2 ([t;,ti41] xXR™)
Now we let the t;’s be such that
1
p—
U Y2
10 S a5 5O

where C*® is the constant appearing in (5.36). By Corollary 5.1 we have that
< (4C%)" T (CT)
and by (5.36),
ol e a1y < € (VAG) + VE)
Now, thanks to the Strichartz estimates of Lemma 1.1, we get that

ll Lottt 2) + el oo (2, 01,22)
< 0 (VAT + Il ez + ol s )
< C (VAW + VT + [l IS G )
< C (VAWE) + VT + (VAR + VD)),
where 6 = 4(3n 4+ 10)/(9(n + 6)). In particular, we get a bound

VA(tiz1) < G(VA),VT)

and iterating this a finite number of times, we cover [t1,¢; + 1] and find a uniform
bound for Eq(u(t),u(t)) depending only on I'. This finishes the proof of Theorem
5.1 in case n = 3,4. Theorem 5.1 is proved. [

(5.37)
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As a remark, the time tg in Theorem 5.1 is actually 1 + ¢y, where ¢y is as in
(5.5). Another remark is that there is a simplier proof of Theorem 5.1 in case n > 3
and p < min(p,,2* + 1). Indeed, we may assume without loss of generality that
p > 2* — 1. By conservation of the Energy we can write that given ¢ > 0,

lull3 < 2E<uo,u1>+2/ Flu)da

1
< pllul3+C (1+ ulyih)

p (5.38)
1)60 1)(1-06
Ll +C (14 Jull B2V Jul 8F00)

IN

L2*
H +1)6 +1)(1-0
< Ll + 0 (14 ull B a0

where ¢ is taken arbitrary large if n < 4, while ¢ = 2% if n > 5, and

0 — p+1 q .

N
If n = 3,4, we can take ¢ — oo and if p < 2*+1, we get, for ¢ sufficiently large, that
(1-0)(p+1) <2, whileif n > 5, and if p < (n+6)/(n—2), then (1-0)(p+1) < 2.
In particular, the energy stays bounded, controled by some function of ||u|| e, f1)-
This proves Theorem 5.1 in case n > 3 and p < min(p,,2* + 1)

When the solution u exists on the whole line R, Proposition 5.1, Lemma 5.1,
and Theorem 5.1 can be refined. This is what we prove in Corollary 5.2 below.

Corollary 5.2. Let f satisfy (1.1) and (3.1) with p < p,, when n > 3, where p,, is
as in (5.21). Let u be a solution of (0.1) with Cauchy data ug,uy. If u exists on
the whole line R, then

2(2
ME(UO,UD’ and
em

2(2 4 €)E(ug,uq)

|1 L5(t)| <
em(4+e)

for all t € R, where Ly is as in (3.5), and E is given by (1.3). Moreover,
Eo (u(t),us(t)) < K (E(ug,u1)), where Eq is given by (1.3), and K € C*(RT,RT)
is as in Theorem 5.1.

Proof. We assume that u # 0. Then, by Theorem 3.1, E(ug,u1) > 0. Let tp € R
be any point in R. Let @ and @ be given by @(t) = u(to + t) and 4(t) = u(ty — t).
Both @ and @ are solutions of (0.1) defined on the half line ¢ > 0. Let H and H be
the corresponding H-functions given by (3.6). If H is the H-function in (3.6) with
respect to u, we get with the conservation of the total energy in Theorem 1.1 that
H(t) = H(to+t) and H(t) = H(to —t) for all t > 0. By Lemma 3.1, H'(0) < 0 if
H(0) >0, and H'(0) <0 if H(0) > 0. It follows that H'(to) = 0 if H(ty) > 0. By
(3.10), H"” > emH. This clearly implies that H(¢) <0 for all ¢ € R. In particular,
the first equation in (5.39) is proved. Moreover, if ¢ is as in (5.5), then

1
to < 1/ ;5 . (5.40)

Let t1 be larger than the right hand side in (5.40), and let ¢5 be any real number
such that to > ¢ + 1. Let also @ be given by @(t) = u(t — t2). Then @ solves (0.1)

Ly(t) <
(5.39)
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with Cauchy data u(—ts2), us(—t2). We apply Lemma 5.1 and Theorem 5.1 to @. By
the first equation in (5.39), which gives that the to for @ is also bounded from above
as in (5.40), and by the conservation of the total energy in Theorem 1.1, we get that
the second equation in (5.39) and the bound Ep (u(t),u:(t)) < K (E(ug,u1)) hold
true for t > 1 +t; — to. Since t5 > 1 +t; can be chosen arbitrarily large, it follows
that the second equation in (5.39) and the bound Eg (u(t), u:(t)) < K (E(ug,u1))
hold true for all ¢ € R. This ends the proof of the corollary. ([

The second equation in (5.39) could also have been proved by coming back to
Theorem 3.1. The equation is indeed a direct consequence of Theorem 3.1 and of
the remark that both ¢ — wu(t) and t — u(—t) exist on the half line ¢ > 0. Another
corollary to Theorem 5.1, and more precisely to the proof of Theorem 5.1, is as
follows.

Corollary 5.3. Let f satisfy (1.1) and (3.1) with p < p,, when n > 3, where p,, is
as in (5.21). Let u be a solution of (0.1) with Cauchy data ug,u;. Then u exists
on the whole line R if and only if

24¢
Uy Ut) oy re| L ——=F(ug,u 5.41
(1) o g T (uo,u1) (5.41)

for all t, where (u,ut); 2 2 is the L*-scalar product of u with uy.

Proof. If u exists on the whole line R, then (5.41) holds true by Corollary 5.2.
Conversely, we suppose that (5.41) holds true for all ¢ where v is defined. By (3.10)
we can write that

L3(t) > 2eEo(u,ur) — 2(2 + ) E(ug, u1) (5.42)

for all ¢ > 0, where Ls is as in (3.5). By (5.41) and (5.42) we then get that
to
Eo (u(s),u(s)) ds

t1
1 2
< % (Ly(t2) — Ly(t1)) + <1 + 5) E(uo,u1)(ta — t1)
E

< 2(2+4€)E(ug,uq1)

e\/em(4d+¢)
2(2+€)E(UO,U1) < 2)
< +(14+- ) F Ug, U1
ey/em(4+¢) € ( )
for all 0 < t; < ty such that u exists on [0,%2] and ¢ < ¢; + 1. The arguments
developed in the proof of Theorem 5.1 together with (5.43), letting S be a constant
function in (5.25), give that Ey(u,u:) is bounded for ¢ > 0. By Proposition 2.2 we
then get that w exists for all ¢ > 0. By reversing time, letting @(t) = u(—t) for
t <0, we also get that u exists for all ¢ < 0, and hence that u exists on the whole
line R. This proves the corollary. (]

(5.43)

)
’ (1 " i) (uo, u1)(t2 —t1)

6. H* SOLUTIONS

In this section, we investigate the case where the initial data have more regularity.
We focus on the case where the initial data is in H* x H? instead of H? x L?
and prove that the corresponding solution has itself more regularity as well. A
preliminary lemma we need is as follows.
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Lemma 6.1. Let T <1 and k € C°([0,T], L?). Assume that for some derivative
0 = Oy, Where a =t ora=1,...,n, 0k € L“/([O,T],Lb/) for some S-admissible
pair (a,b). Let w € C°([0,T], H?) N C*([0,T],L?) N C*([0,T], H~2) be a strong
solution of equation (1.7) with Cauchy data (wo,w1) € H* x H?. Then there holds
that Ow € C°([0,T], H?) N C1([0,T],L?) N C?([0,T], H~2), and

|0w||coo, 11,12y + |OwW]| e (0,77, L4
<C (||wo||H4 + lwil[ 2 + [[k(0)[| L2 + ”ak”LG'([O,T],Lb’))

where (c,d) is any B-admissible pair, and C > 0 is independent of T, w and k.
Besides, in case 0 = 0y, it also holds that w enjoys the additional reqularity that
w e C°[0,T), H*) N CY([0,T], H*) N C2([0,T], L?), and

(6.1)

lwllcogo,r),mey < C (||w0||H4 + lwil[ 2 + [kl coo,7y,02) + ||kt||La'([o,T],Lb’)> ;
(6.2)
where C' > 0 is independent of T, w and k.

Proof. By density, it suffices to prove this for smooth functions wg,w; € C§°(R"™)
and h € C§°(R x R™). First, we treat the case when 9 = 9;. We let v = yw. Then
v satisfies (1.7) with k; instead of k, v(0) = w1, and v;(0) = k(0) — A%wy. Applying
the Strichartz estimates (1.8), we obtain

[vllcoo,my, a2y + llvellcoqory,z2) + [Vl Le o,y
< C (lwnllmz + lwollzs + N£O)lzz + el or o 77,20 )

where C' > 0 is independent of w, T' and k. Then, using equation (1.7), we get that
A2w =k —wy =k —vp € C°[0,T], L?). Besides, the Strichartz estimates (1.8)
applied to w give that

(6.3)

lwllcoo,ry,m2) < C (lwollmz + llwillze + [kl o,7).22)) - (6.4)
Consequently, w € C°([0,T], H*) N C([0,T], H?) N C?([0,T], L?), and (6.2) follows
from (6.3) and (6.4). Now, in case d = 9; for some i = 1,...,n, letting again

v = Ow, we get that v satisfies (1.7) with Ok instead of k& and (v(0),v:(0)) =
(Owy, Owy) € H? x L?. Applying the Strichartz estimates (1.8), we obtain

llvllcogo,r), 2y + llvellcogo, 1,2y + vl Le(o,77,29) 65
6.5
< C (Ihwrllse + wollsrs + 19K o oy -
Clearly, (6.5) give (6.1). This ends the proof of Lemma 6.1 O

As a remark the above developments can be easily adapted when w satisfies (1.7)
with initial data (wg,w;) € H* x H? and k = hy + hg, where hy € C1([0,T], H')
and hy € C°([0,T], L?) with hg,dhy € L*([0,T],L"). The main result of this
section is as follows.

Proposition 6.1. Letu be a strong solution of (0.1) in [0, T] with f satisfying (1.1)
and (ug,u1) € H* x H%. Then u € C°([0,T], H*) N C*([0,T], H*) N C*([0,T7], L?).

Proof. We define the sequence (u*); by u® = 0, and u**! = x(u*), where y is the
contraction given in (1.23) in Section 1. We know that there exists 7/ > 0 such that
ub — u in CO([0, 7], H?) N C1([0,T'], L?) when n < 4, and such that «* — u in
H = C°([0, "], H2)nC* ([0, T], L2) N L4([0, T}, L") when n > 5, where ¢ = 2(2¢ —1)
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and r = 2%(n + 4)/(n + 2). We treat the case n > 5. The case n < 4 is much
simpler. We assume in what follows that n > 5, p = 2¢ — 1, and let M > 0 be such
that for any k, the norm of u* in H is bounded by M. Given € > 0 to be defined
later, taking 7" small, 77 < 1, we can assume that for any k

0¥ ]| Loqo.r,Lmy < €. (6.6)
We let also R = ||ug|| ga + ||u1]| 2. We first prove by induction on k that for any k,
uf € CO([0,T'], H*) N C1([0,T"], H?) N C?([0,T’], L?), and that for any derivative
=08, a=tora=1,...,n, OuF € H and

06| oo, 12y + 10U | oo, 7,22y + 100* | Lago. ),y < C(M,R), (6.7

where C(M,R) = C(R + R™E 4 M) is some constant independent of k. This is
obvious when k = 0. Suppose our proposition holds true for some k > 0. Then
uFtl = y(uF) satisfies equation (1.7) with & = f(u*) — mu* = hy(u*) + hao(u®),
where hy and ho are the functions defined in the proof of Theorem 1.1 in Section
1. Since hy is lipschitz, we get that 9 (hi(u*)) = hi(u*)ou* € L>([0,T"], L?),
and since hg satisfy (1.17), ho is locally lipschitz, and, using (6.6), we obtain that
9 (ha(ug)) = By(uF)ouk € L2([0,T'], L+ with

’ k k|2
B o 22y SN e gy N0 noirn

(6.8)
<ema ||3Uk||Lq([0,T'],Lr)-

Independently, we have that

i
[h1(uo)l|z2 < Clluollzz and [[ha(uo)|lpz < Clluol|fa"- (6.9)

Applying Lemma 6.1, estimates (6.8), (6.9), and our induction assumption, we get
that Ju**! € H and that

186" ooy, 12y + 06" | a0, L7y + 180 0o 0,7, 22)

ntd .
<O (R+ REH) + CT 06| e o 1) + Cem 1106 | agor ey (6.10)
<C (R LR 4 M) :

provided that € and T” are chosen sufficiently small. This proves (6.7). It follows
that (u*)y is uniformly bounded in L>([0,7"], H?). Besides, when 5 < n < 12, we
have that

+
[ha (W) e 0,7, 12) < Cllu®||™ 2(nta)
Loc([o T/),L 4
< C k} n—4
[ HLOC([()T,]HM) (6.11)
< 1§ oz,
<C'(RM).

F‘urthermore7 ho(uk) € C°([0,T'], L?). Indeed, letting, for t,s > 0, g*(t,s)(z) = 0
if uk(t,x) = u¥(s,z), and

gk(tﬂ 8) =

ha(uF (1)) — ha(u”(s))
uk(t) — uk(s)
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otherwise, we get that, for ¢, > 0,
ho(uF (t 4 0)) — ha(u® (1)) = (uF(t + 0) — u®(t))g" (¢t + 6,1),
and consequently, by (1.17),
o (¢ + 0)) — ha(u*(8))]] 2
< (1 +0) = ()] s (¢ + 0,0)] s

< Cllut(t+6) —ub ()| an, sup [ |75 ]] nga
t,t+6] (6.12)

k PN =T =y kg '

< Offuk (¢ +0) — uF ()| 757 |uF (¢ + 0) — uF (1) 7 s [l
tit+
n +2471,+32

<O sup bl ) b+ 6) —ub (077

[t,t+0]

Since u* € L>([0,T'], H*) N C°([0,T"], L?), we get that ho(u¥) € C°([0,T], L?).
This proves the above claim. Now we can apply Lemma 6.1 thanks to (6.7) and
(6.12) and conclude that u*** € C°([0,7"], H*) N C([0,T"], H?) with the property
that

[u* | Lo (0,77, 1%) < C' (R, M). (6.13)

When n > 13, we proceed as follows. Namely we write that

ntd
[P (W) oo jo,77,22) < Cllu]|"~* a(nta)
=0 )

<CHU'“H" :
Lo ([0,17),H7+7)

nid (6.14)

. o1z
<C (Ilu IILL“ (0.T], L= (f0,17], H4)>

< Cl (R M) HukHLw [0,T7],H%)
and, as in the case where 5 < n < 12, see (6.12), we get that ho(u¥) € C°([0,77], L?).
Then we can apply Lemma 6.1. In particular,
He (o, T, HY) n (0, T), H?)
and
n—12
||uk+1||L°°([O,T’],H4) < C/(R7 M) (1 + ”uk Lnooﬁ(l[(),T/LH4))
< C'(R,M).
Finally, with (6.13) and (6.15), we get that for any n > 5 and for any time ¢ € [0, T"],
(u” (t))k is bounded in H* uniformly in ¢ and k. Since it converges to u(t) in H?, we
get that u(t) € H*, and that u € L>°([0,T"], H*). Finally, u € HNL>([0,T"], H*)N
W14([0,T'], L"). Hence, proceeding as in (6.12), we get that h(u) € C°([0,T"], L?).

Applying once again Lemma 6.1 we see that u € C°([0,7'], H*) N C([0,T"], H?) N
C?([0,T'], L?). This ends the proof of the proposition.

(6.15)

An interesting corollary to the above developments, where we get smooth long
time solutions, is as follows.
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Corollary 6.1. Let n < 7. For any Cauchy data (ug,u1) € C(R™) x C§°(R™),
there exists a solution u € C*°(R x R™) of the cubic defocusing equation (0.1) with
f(u) = —u®. Besides, this solution is unique among all finite energy solutions.

Proof. First we prove recursively on k that for any integer k > 2, there holds
that u € CO(R, H**) N C*(R, H**~Y). By Proposition 6.1 this holds true when
k = 2 and, consequently, we have that v € LS (R, L>°). Now we assume that for
some k > 2, u € CO(R, H?*). Then, see for instance Tao [61, Appendix A], AFu? €
CO(R, L?). Tt follows, see Lemma 1.1, that for any k, A*u € CO(R, H*)NC*(R, L?).
In particular, by induction, u € CO(R, H**) N C*(R, H2*~1) for all k. We have
that

0%u

ot?
so that uy € CO(R, H?¥) for all k. By induction, using, for instance, once again Tao
[61, Appendix A] for the cubic nonlinearity, it easily follows that v € C* (R, H2¥)
for all k, k. The result follows. O

=A%y —mu—u?

As a remark, when n = 8, the cubic defocusing equation (0.1) with f(u) = —u?

is critical and when n > 9 it is supercritical.

7. A SEGAL’S TYPE THEOREM

We aim here in proving a Segal’s type theorem for (0.1), and more precisely
that long time solutions of (0.1) exist when we adopt a weaker notion of solution
than the one in (1.4) and the nonlinearity in (0.1) is of defocusing type. Given
f € C°(R,R), we say that u is a weak solution of (0.1) in Rt with Cauchy data
up € H> and uy € L? ifu € L°H?> N HY* L2, f(u) € L}, (Rt x R"), and

loc
+o0 2
/ / u (gf + AZp + m<p> dtdx
O n t

+oo
= /0 - f(u)pdtdr — /]R" uope(0)dz + /}Rn u1p(0)da

for all p € C5°(R x R™). Note that this implies that u € CO(R, H') N C% (R, H?).
By extension, we say that u is a weak solution of (0.1) in R with Cauchy data wug
and u; if u is a weak solution of (0.1) in R with Cauchy data uo and u; and if,
by changing ¢ into —¢, we get a weak solution of (0.1) in R* with Cauchy data ug
and —up. A solution of (0.1) in the sense of (1.4) is a weak solution of (0.1). A
weak solution w is said to be of finite energy, or a weak finite energy solution, if we
also have that F(u) € L°°L! and that E(u,u;) < FE(ug,u;) for almost every time
t, where F is as in (1.3). We prove here that the following theorem holds true. The

result for the wave equation in Euclidean space goes back to Segal [52].

Theorem 7.1. Let f € CO(R,R) be locally Lipschitz and such that f(0) = 0.
Suppose that x f(x) < 0 for all z € R. Then, for anyug € H? such that F(ug) € L*,
and anyuy € L?, there exists a weak finite energy solution of (0.1) in R with Cauchy
data ug and uq.

(7.1)

Proof. Tt clearly follows from the assumption zf(z) < 0 in the theorem that

||

F(z) = sgn(x) ; f(sen(z)t)dt <0 (7.2)
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for all x, where sgn(x) = £1 is the sign of . We let (sx)r and (tx)x, to be chosen
later on, be sequences of positive real numbers such that s, — +o00 and t; — 400
as k — +00. Then we define (fx)x, where the functions f, : R — R are given by

fe(@) = f(=sp) ifx < —sp
fu(x) = f(x)if —s, <x <t , and (7.3)
fk(ﬂj) = f(tk) lf.T Z tk

for all k. The fi’s are Lipschitz functions. We may then apply Theorem 1.1 and
Corollary 2.1 to get the existence of a solution uy in R* of the equation
2

% + Ay +mu = fi(u) (7.4)
with Cauchy data ug and u;. Let vy be the solution of (7.4) in Rt with Cauchy
data wy and —u;. Let also up be defined by ug(t,-) = ug(t,-) if ¢ > 0, and
ug(t,”) = ve(—t,-) if t < 0. As is easily checked, if we still denote by u the
map t — ug(t, ), then uy solves (7.4) in R with Cauchy data ug and uy. Let Ej be
given by

1

o= [ (@u+md+ ) do— [ Ftude, (75)

where F}, is the primitive of fj, given by Fi(x) = [ fi(t)dt. The conservation of
the total energy in Theorem 1.1 gives that

1

5/ ((Aug)? + muj, + uj, ;) dx — / Fy(ug)dx = Fy, (7.6)

for all k, where uy,; = (ux) is the partial derivative with respect to ¢ of ug. Now
we claim that we can choose (sg)i and (tx)g in (7.3) such that

F(uw)dr — F(u)dx (7.7)
R”L R'IZ
as k — +oo, for all u € H? such that F(u) € L'. We prove (7.7) in what follows.
As a preliminary remark, we note that

F(u) <0 (7.8)

for all k and all uw € H?. Suppose now that f(z) — —oco as © — +oo. Then we
can choose the sequence (tx)x such that f(tx) = max,cp, 4oc) f(2) for all k. With
such t;’s we can write that if u > 0, then Fj(u) > F(u). If not the case, namely
if f(z) does not converge to —oco as & — 400, we choose the sequence (tx); such
that —f(t;) <ty for all k. Then, when u > 0, Fj,(u) — F(u) = 0 if u < t;, while

Fip(u) = F(u) > f(te) (u—tx)
> —tg (u—ty)
> —u?

if w > tg. In particular, in both cases, when f(z) — —oco as © — +o0 and when
this is not the case, it follows from the above discussion that we can always choose
(t)r such that for any v € H?, and any k,

Fi(u) > F(u) — u? (7.9)

when w > 0. In a similar way, if f(xz) — 400 as x — —o0, we choose the sequence
(sk)k such that f(—sg) is the minimum of f(z) for x € (—o0, —sg] and all k, and
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if f(x) does not converge to +00 as x — —oo, we choose the sequence (sg)i such
that f(—sx) < s, for all k. Then, as above, we get that for any v € H?, and any k

Fr.(u) > F(u) —u? (7.10)

when u < 0. Summarizing, we get with (7.8), (7.9), and (7.10) that for any u € H?,
and any k,

F(u) —u? < Fi(u) <0. (7.11)
Since we also have that Fj(u) — F(u) almost everywhere in R”, we get with (7.11)
that (7.7) holds true. Now, by (7.7), and since F(ug) € L', we can write that
Er — E(ug,u1) as k — 400, where Fj is as in (7.5) and E is the total energy
as in (1.3). In particular, up to passing to a subsequence, we can assume that
E; < 2FE(ug,uq) for all k. By (7.6) and (7.8), we can write that

Eo(ug,u =F +/ Fi(ug)dx
o(ur, ukt) = Ex ) k(ur) (7.12)

< 2E(ug, u1)

for all k£ and all ¢ > 0, where Ej is as in (1.3). By construction of the wy’s,
(7.12) holds also for ¢ < 0. By (7.12), and this remark, the u;’s are bounded in
HY([-T,T)**™) for any T > 0. Up to passing to a subsequence, we may there-
fore assume that for any T' > 0, uy — u strongly in L?([-T,T]**") and almost
everywhere as k — +00. We may also assume that Aui — Awu and that up; — u,
weakly in L2([~T,T]'*") as k — +o0. By Fatou’s lemma, we can write that for
almost every t,

/n (; (Au)?® + mu® +uf) — F(u)) da

1
< lim inf ( (Aug)? + muj, + uj ;) — Fk(uk)) dz .
k—+oco Jpn 2 ’

(7.13)

Then, by (7.13), we get that E(u,u;) < E(ug,u1) for almost every time ¢, where E
is the total energy as in (1.3). This is the nonincreasing property of the energy we
ask for in the definition of weak finite energy solutions. Now we claim that

fk?(uk) - f(u) in Llloc(R X Rn) (714)

as k — +oo. Given T > 0 arbitrary, we let K7 = [T, T]**". Multiplying by u,
the equation (7.4) satisfied by the wuy’s, and integrating over Kr, we also get, after
some integration by parts, that

T
/KT |ug fr(ur)|dtdx S/O /n [u fr(ug)|dtdx

< —/(JT/n ug fr (ug)dtdzx

T 2
< —/ / U (88:; + A%y, + muk> dxdt (7.15)
0 n

T
—/ (ug(T)ug(T) — upuq ) dz —l—/ / uj, dtdx
n 0 n

<4 <¢1% + T) E(ug,u1)

IA
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for all k. Now we may use Egoroff’s theorem to get that (7.14) holds true. We let
e > 0 be given, and let §. > 0 to be chosen later on. Since fx(ur) — f(u) almost
everywhere, we can write by Egoroff’s theorem that there exists a measurable subset
N of Kt such that Vol(IN) < é., where Vol stands for the euclidian volume, and
such that fi(ur) — f(u) uniformly in Kr\N. Using (7.15), we can write that

/ | ()| dede < / ()| dtdx
N NN{|up|<D}
1

D NN{|ug|2D}

1
< Vol(N — dtd
< VOI(N) mae Uf1 5 o) vt

|u fr.(ur)| dtdx
(7.16)

4 (\/% —|—T> E(ug,uq)
D

<6 Jmax | fl+

where D > 0 is arbitrary and k is sufficiently large such that D < t, |sx|. The same
upper bound holds for [, |f(u)| dtda by Fatou’s lemma. In particular, by (7.16),

/ | fi(ug) — f(u)| dtdx
K

S/ka(uk)f(u)|dtdl‘+/KT\N|fk(uk)f(u)dtdz (7.17)

8 (ﬁ + T) E(ug,u1)
D
+ Vol(K7) [| fi(ur) = f (W)l poe (7 )

for all D > 0 and all k is sufficiently large such that D < ¢, |sg|. Choosing D > 0
such that

<
< 26, [Er]lja,%]\flJr

1
24 (ﬁ + T) E(UO,UJ) S eD )

and then ¢, > 0 such that we also have that 60. max[_p pj|f| < &, we easily get
with (7.17) that for k£ > 1 sufficiently large,

/ | fe(u) — flu)| dtdx < e .
Kr

Since ¢ > 0 is arbitrary, this proves (7.14). Now let ¢ € C(RT x R"). By
multiplying (7.4) by ¢ and by integrating over RT x R™ we can write that

+oo 2
0 n

“+oo
:/ fre(ur)pdtdz —/ uoapt(O)dx—l—/ urp(0)dz |
O R’!L n n

and (7.1) follows from (7.14), (7.18), and the convergence of the uz’s in L2 (RxR").

loc
By construction, when changing ¢ into —t and u; into —uy, we also get that (7.1)

holds true. This ends the proof of the theorem. O

(7.18)
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8. STABILITY

In this section, we discuss stability of smooth Cj solutions of (0.1) following the
approach developed in Struwe [60] for the wave and Schrodinger equations. Here
we assume that f € C1(R,R) is such that for any R > 0, there exists C = C'(R) > 1
such that

1
— aF(w) —Cuw? < —F(u+w)+ F(u) + f(u)w < —CF(w) + Cw?* , (8.1)
[f(u+w) = f(u) = f(w)w| £ ~CF(w) + Cuw?

for all |u| < R and all w. Also we assume that f(0) = 0 and that xf(z) < 0 for
all z in order to recover Segal’s theorem. A typical nonlinearity satisfying these
assumptions is the pure power nonlinearity given by f(u) = —|u|P~!u for p > 1.

Theorem 8.1. Suppose u € C([0,T] x R") N C?([0,T], H*) is a classical solution
of (0.1) with Cauchy data (ug,u1) and f satisfying (8.1). Let v be any finite energy
solution of the same equation with Cauchy data (vo,v1) € H? x L?. Fort >0, let
w(t) = v(t) —u(t). There exists constants C1(u), C2(u) such that, for anyt € [0,T],

E(w(t), w:(t)) < Cre“? B(w(0),14(0)). (8.2)

In particular, uniqueness for the Cauchy problem with Cauchy data (ug,u1) holds
true among weak finite enerqgy solutions.

Proof. Let w = —w. We observe that w satisfies
0w 9
W+Aw—|—mw+f(u—w)—f(u)=0 (8.3)

in the sense of distributions. Let Su = Au + tu;. We split the energy into several
parts by writing that

E(w,v) = E(u,uy) — I+ 1T, (8.4)

where

I= Re/ (SuSw + muw — f(u)w) dz , and

1= / (; (15wl + mw?) — (F(u - w) — F(u) + f(u)w)) da.

As aremark, t — I(t) is a continuous function of t. Now, let (nx)x, m € C§°((0,1)),
be an increasing sequence of functions such that for any k, 0 < np < 1 and g
converges almost everywhere to the characteristic function of the set [0,¢]. In the
sense of measures on [0,t], we have that n,, — 6y — &; vaguely as k — +oco0. In
what follows, (-,) denotes the duality product of a smooth compactly supported
function and a distribution in (0,¢) x R™. We have that

t

I(t) — I(0) = — lim ne(s)I(s)ds
koo fo (8.5)

t
=- HIJP / / N (8) (upwy + AulAw + muw — f(u)w) drds .
— 100 O n
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Now, we assume that u = @ € C§°([0,T] x R™). Then, we have that

t
/ / 4 (8) (Tyw; + AuAw + miw — f(i)w) deds
0 n
= <77;cﬂt»wt>17 + (A, Aw)p +m <77;c7~hw>D - <77;cf(ﬂ)7w>D

d d
= Ut) — MU, W +< At —77A117Aw>
<ds (nk t) kUtt t>D ds (77k ) k t . (8.6)

d - - d i "(@) e, w
+m <ds (mett) — Ukut,”w>D - <ds (e f (@) —mf* (@) i, >
=— <77k1~tta (wtt + APw + mw — f/(ﬁ)w»D
- <771c (att + A0+ mi — f(ﬁ)) ’wt>D :

D

Then, using (8.3) and (8.6), we get
t
- / / N (8) (Gpwy + AwAw + miw — f(@)w) deds
0 n

- /O /n e (e (f(u) = fu—w) = f({@)w) + (dy + A4 +ma — f(@)) w,) dadt .

Now, by density, this remains true for u instead of 4, and, with (0.1) and (8.1), we
find that

I(0) — I(t) = — lim nk/ (f(u+w) — f(u) — f(u)w) ugdzdt
0

k—-4oc0

and thus that

[1(0) — I(t)| < C/O / (—=F (@) + &*) dzds

. (8.7)
< c/ E(i(s), @(s))ds
0
where C' = C(||lu||L~) depends on u. Moreover, since
w e ([0, T], L) N €y ((0,T], L7)
then ¢t — ||w(t)||2, is C', and
¢
[a()[72 < [l@(0)]72 +2/ / Wy (s)(s)dads
0 JE" (8.8)

t
< a3 +C [ B (as)ai(s) ds.
0
Independently, using (8.1), we get the following minoration of 17 in (8.4). Namely
that

() > / @ (1S@() + ma(t)?) — éF(w(t)) - cw(@?) do

> LB @(1), @(t) — (o),

(8.9)
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while, at time t = 0 we have that

1, .. N _ N
I1(0) < /Rn <2 (|S@|* + mw*) — CF(w) + sz) da
< CE (w(0), we(0)) -

(8.10)

Now, since v is a finite energy solution, we obtain that
0 < E(v(0),v:(0)) — E(v(t),ve(t)) = —=I(0) + I(t) + II(0) — II(t) . (8.11)
Then we use (8.9), (8.11), (8.7), and (8.10) to get that

E(w(t), @ (t)) < CII(t) + Cllw(t)]|7

¢ 8.12
< C’/O E(w(s),w(s))ds + CE(w(0),w:(0)). ( )

An application of Gromwall’s lemma provides the conclusion. This ends the proof
of the theorem. O
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