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Given V scalar field, and V(W) a potential, Einstein-scalar field
equations are written as:

1
Gj = VWYV — 2 (VWY aW) 75 — V(W)

where 7 is the spacetime metric, and G = Rc, — 35,y is the
Einstein curvature tensor. In the massive Klein-Gordon field theory,



The constraint equations, using the conformal method, are

WD Agu+ h(g v)u= (g, ) "L+ 25D (1)
divg(DW) = =142 Vr — 7V (2)
where A, = —div,V, 28 =2n/(n - 2),

n—1
-2

h=S;— Vol , a=lo+DWP 472, f=4V($) -

and S; is the scalar curvature of g. Here, 1, m and 7 are functions
connected to the physics setting (7 mean curvature of spacelike
hypersurface), o TT-tensor, W vector field, and D the conformal
Killing operator given by

(DW); = (ViW); + (T;W); — > (divg W)

The system (1) — (2) is decoupled in the constant mean curvature
setting, namely when 7 = C'e.



The free data are (g, 0, 7,%, 7). The determined data are u and
W. They satisfy

WD Agu+ h(g,¢)u = (7)1 4 AW (1)
divg(DW) = =142V — 7V . (2)
More details available in the survey paper by Robert Bartnik and

Jim Isenberg: The constraint equations, arXiv:gr-qc/0405092v1,
2004.



(M, g) compact, 9M = (), n > 3. Let h, a, and f be arbitrary
smooth functions in M. Assume a > 0. Consider

a

2*-1
Agu+ hu = fu +u2*+1 )

(EL)

where Ag = —divgV, and 2* = 22

Example: (Sub and supersolution method, Choquet-Bruhat,
Isenberg, Pollack, 2006). Assume Az + h is coercive and f < 0.
Let v > 0 and ug > 0 be such that

Agug + hug = v .
For t > 0, let uy = tug. We have:
(i) ug is a subsolution of (EL) when t < 1, and

(ii) uy is a supersolution of (EL) when t > 1.

Since u; < up when t < t/, the sub and supersolution method
provides a solution “u € [ut, up]" for (EL).



Question: What can we say when Ag + h is coercive and either f
changes sign or f is everywhere positive, i.e. when maxpy f >0 7

Assume Ag + h is coercive. Define

ul|? = /M (IVul? + hu?) dvg |

u € H'. Let S(h) to be the smallest constant such that

2/2*
(/ |u|2*dvg) 55(/7)2/2*/ (IVu]® + hu?) dvg
M M

for all u e H.



Theorem 1: (H.-Pacard-Pollack, Comm. Math. Phys., 2008) Let
(M, g) be a smooth compact Riemannian manifold, n > 3. Let h,
a, and f be smooth functions in M. Assume that Ay + h is
coercive, that a > 0 in M, and that maxp, f > 0. There exists

C = C(n), C > 0 depending only on n, such that if

x a C(n
lolfy [ S <
M P (S(h) maxp |f])

and [,, f©? dvg > 0 for some smooth positive function ¢ > 0 in
M, then the Einstein-scalar field Lichnerowicz equation (EL)
possesses a smooth positive solution.

Example: if fM fdvg > 0 then take ¢ = 1 and the condition reads
as
C h
/ advg < _Clneg.h) 371 ,
M (maxM |f‘)

where C(n, g, h) > 0 depends on n, g and h.



A perturbation of (EL) is a sequence (EL, ), of equations, a € N,
which are written as

Ao

Agu + hau = fauz*il + W

+ ke (ELy)
for all c. Here we require that

ho = h, a,—a, ko —0

in C% as & — 400, and that f, — f in C1" as & — +00, where
1

If (EL) satisfies the assumption of Theorem 1, any perturbation of
(EL) also satisfies the assumptions of Theorem 1.

A sequence (uq)q is a sequence of solutions of (ELy ), if for any «,
uq solves (EL,).



Definition: (Elliptic stability) The Einstein-scalar field
Lichnerowicz equation (EL) is said to be:

(i) stable if for any perturbation (EL,). of (EL), and any
H*-bounded sequence (uy)a of smooth positive solutions of
(ELw)a, there exists a smooth positive solution u of (EL) such that,
up to a subsequence, u, — u in CY(M) for all 6 € (0,1), and

(ii) bounded and stable if for any perturbation (EL,). of (EL), and
any sequence (uy)q of smooth positive solutions of (EL,)q, the
sequence (Uy)o is bounded in H' and there exists a smooth

positive solution u of (EL) such that, up to a subsequence, u, — u
in CH(M) for all 6 € (0,1).



Remark 1: Assuming stronger convergences for the h,'s, f,'s,
etc., then we get stronger convergences for the u,'s. E.g., if
hy — h, f, — f, 3y — aand ko, — 0in CP? p e N and

6 € (0,1), then uy — u in CPT29 o < 9.

Remark 2: Stability means that if you slightly perturb h, a, and f,
and even if you add to the equation a small “background noise”
represented by k, then, in doing so, you do note create solutions
which stand far from a solution of the original equation.

Remark 3: Say (EL) is compact if any H-bounded sequence
(Uq)a of solutions of (EL) does possess a subsequence which
converges in C2. Say (EL) is bounded and compact if any
sequence (U, )q of solutions of (EL) does possess a subsequence
which converges in C2. Stability implies compactness. Bounded
stability implies bounded compactness.



Let D = C>°(M)* and | - ||p be given by

3
IDllp = Ifillcox + IIfall cr
i=1

for all D = (fi, >, f3,f4) € D. For D = (h,a, k,f) in D consider

Agu+ hu = X1

oeyr Tk (EL)

If D = (h,a,0,f), then (EL') = (EL). Let A >0, D = (h,a, k, f)
in D, and define

Sp.a = {u solution of (EL') s.t. [[u|m <A},
and Sp = {u solution of (EL")}.

When D = (h, a,0, f) we recover solutions of (EL).



For X, Y C C? define

2 (X;Y) =sup mf lv—ulc -
ueX ve

By convention, d;(X; 0) = 400 if X £ 10, and d‘C_g’((Z); Y) =0 for
all Y, including Y = 0.

Let D = (h, a,0, f) be given.

Stability < (EL) is compact and
Ve >0, VA>0, 36 >0s.t. VD' = (H,d k', f') € D,
||D/ — DHD <) = d(c_g(SD/,/\;SD,/\) <e€.

Bounded stability < (EL) is bounded compact and
Ve >0, 36 > 0s.t. VD' = (W4, K, f) € D,
||D/ — DHD <) = d;(SD/;SD) <eE.



Theorem 2: (Druet-H., Math. Z., 2008) Let (M, g) be a smooth
compact Riemannian manifold of dimension n > 3, and

h,a,f € C®°(M) be smooth functions in M with a > 0. Assume
n=3,45. Then the Einstein-scalar field Lichnerowicz equation

a
y2 1

Agu+ hu= fu® 1 4 (EL)
is stable. The equation is even bounded and stable assuming in
addition that f > 0 in M. On the contrary, (EL) is not anymore
stable a priori when n > 6.



|. Further directions and comments - 1

Lemma 1: (H.-Pacard-Pollack, Comm. Math. Phys., 2008)
Assume a >0, f > 0, and

n ,,47" +1242 ”47:2
n : </ an‘;zf%fdvg) +2 - / (h )ni dvg ‘
(n - ]_)n— M M f

Then the Einstein-scalar field Lichnerowicz equation (EL) does not
possess solutions.

N

In particular, for any h, and any f > 0, there exist a positive
constante C = C(n, g, h, f) such that if

n+2
/a4ndvg2C,
M

then (EL) does not possess solutions.



Proof: Integrating (EL),

* dv,
fu* ~td /ag:/hd :
/I\/I ’ c M u? M e

By Holder's inequalities,

4 n—2
h+ n+2 n+2 . e
/ hudvg < (/ (Iz,,iQCJI‘/g> </ fu? _ldvg> : , and
M M e M

n+2

3n—2 +
n+2 _3n—2 *_ 4n adV Tan
/ a 4n f 4n dVg S </ fu2 1dVg> </ 2*45].)
M M mu




4
1147'7 4+ 12 o
X + </ an;ffy‘,lzz dVg) +2 Xl_n S </ (h )nizdvg> )
m M f=

where

This implies

4n

n nio sn w43 A dv, \ "
”7_1 </ a4+"2f34”2dvg) = / ()n# 6
(n - 1)n M M f s




Il. Further directions and comments - 2

Fix h, a and f. Assume Ag + h is coercive, and a, f > 0. Let
t > 0 and consider

ta
u2*+1 -’

Agu+ hu = fu* 7 4 (EL,)
According to Theorem 1 and the Lemma:

(i) (Theorem 1) for t < 1, (EL:) possesses a solution,

(ii) (Lemma 1) for t > 1, (EL;) does not possess any solution.
Assuming n = 3,4,5,

(iii) (Theorem 2) (EL;); is bounded and stable for t € [tp, t1],

where 0 < tp < t3.



Let A > 0. Define

Qp = {u € C% st ||ullcae < A and ml\j,n u> /\1} .

Fix to < 1 such that (ELy,) possesses a solution. Fix t; > 1 such
that (ELy,) does not possess any solution. Assume n = 3,4,5.
Define F; : Qpn — C?? by
Fu=u— Lt (A2 2
td — U2*+1 ’
where L = A, + h, and t € [to, t1]. By (iii), there exists Ag > 0
such that F;1(0) € Qa, for all t € [to, t1]. Then, by (ii),

deg(FtO,Q/\,O) =0

for all A > 1. In particular, assuming that the solutions of the
equations are nondegenerate, the solution in Theorem 1 needs to
come with another solution.



I11. Proof of Theorem 1
We aim in proving:

Let (M, g) be a smooth compact Riemannian manifold, n > 3. Let
h, a, and f be smooth functions in M. Assume that Ag + h is
coercive, that a > 0 in M, and that maxy f > 0. There exists

C = C(n), C > 0 depending only on n, such that if

x a C(n
lolfy [ v < U
YR (S(h) maxpy |f])

and [, fp? dvg > 0 for some smooth positive function ¢ > 0 in
M, then the Einstein-scalar field Lichnerowicz equation

a

2%—1
Agu+ hu = fu + 2

(EL)

possesses a smooth positive solution.

Method: approximated equations, mountain pass analysis.



Fix € > 0. Define
1
1M (u) = 2/ (IVu® + hu? )dvg—/ )% dvg |

and ) J

@) = £ / _advg

S e ras
where u € H!. Let

=104 @)

Let ¢ > 0 be as in Theorem 1. Assume ||¢|[» = 1. The conditions
in the theorem read as
/ ?dvg < C(n) n—
M ¥ (S(h) maxp |f])

T (1)

and [, fo? dvg > 0.



Let &, ¥ : R™ — R be the functions given by

1, maxuylf]
=_-t°———S§
2 2*

1 f
W(t) = 2t2+ma);*M||5

d(t) (Mt? | and

(Mt .
These functions satisfy

® ([lulln) < 1M (u) < W (|lulla) ()

for all u e HL. Let t; > 0 be such that ® is increasing up to t;
and decreasing after:

—(n—2)/4
t1 = (S(h) mISx|f\> .

Let tg > 0 be given by
to = #t
"=\ 2(h—1)



Then )
U(to) < (1) (3)
and for C < 1 the condition in the theorem translates into
1 a
2" Ju (top)?”

Let p = ®(t1). Then, by (3) and (4),

dvg < %cb(tl) . (4)

l(tow) < p
and by
O ([Jullp) < 1D (u) < W ([lull) (2)
we can write that
le(u) > p

for all us.t. |jullp = t1.



We got that there exists p > 0 such that

I-(top) < p

and
l(u) = p

for all us.t. [[ul|s = t1. Also t; > to. Since [, fo* dvg > 0,
IE(tSO) — =00
as t — +o0.

= We can apply the mountain pass lemma.



Let t, > 1. Define
¢ = inf max/.(u)

yel uey
where I is the set of continuous paths joining typ to tow. The
MPL provides a Palais-Smale sequence (uf)x such that
I.(u}) — ¢ and [(u)—0
as k — +o00. The sequence (uf)x is bounded in H!. Up to a

subsequence, uj — u. in H. Then u, satisfies

aug

Agu. + hu, = i 1 —
(e+u2)z ™

In particular, u. is positive and smooth.



We can prove that the c.'s are bounded independently of €. In
particular the family (u.). is bounded in H!. Now we can pass to
the limit as € — 0 because u. will never approach zero. Take

Xz € M such that u.(x:) = minp u.. Then Agu(x.) <0 and

a(XE) _ '
(e + u:(x)2) T+

‘h(X€)| + ‘f(xe)‘ us(xs)z*_z >

This implies that there exists dg > 0 such that

m,\jln us > dp

for all e. If u. — win HY, then u > g and u solves (EL). O



IV. Proof of the stability part in Theorem 2
We aim in proving:

Let (M, g) be a smooth compact Riemannian manifold of
dimension n > 3, and h,a, f € C*°(M) be smooth functions in M
with a > 0. Assume n = 3,4,5. Then the Einstein-scalar field
Lichnerowicz equation

a
y2+1

Agu+hu= ¥ 71 4 (EL)

is stable, and even bounded and stable if f > 0 in M.

Method: blow-up analysis, sharp pointwise estimates.



Let (ELy)o be a perturbation of (EL). Let also (uq)q be a
sequence of solutions of (EL,). Consider

(H1A) f > 0in M,

(H1B) (ua)a is bounded in H1,

(H2) Jeg > 0 s.t. uy > ¢e0in M for all a.

We claim that:

Stability Theorem: (Druet-H., Math. Z., 2008) Let n <5. Let
(ELy)o be a perturbation of (EL) and (u)a a sequence of
solutions of (ELy)qa. Assume (H1A) or (H1B), and we also assume

(H2). Then the sequence (uy)a is uniformly bounded in C,
6 € (0,1).

By (H2),
y (H2) .
|Agun| < Cuf, ,

where C > 0 does not depend on «.



Proof of stability theorem: By contradiction. We assume that
|ualloo — +00 as @ — +o00. We also assume (H1A) or (H1B),
and (H2). Let (x4)a and (pa)a be such that

(i) xqo is a critical point of u, for all «,

n—2
(ii) pa® supg,_(p,) Ua — +00 as a — +0o0, and

(iii) dg(xa,X) "2 ta(x) < C for all x € By_(pa) and all a.

Then :

Main Estimate: Assume (i) — (iii). Then we have that p, — 0,
—2

n

Pa’ Ua(xq) — +00, and

e A
Ua(Xa) o 2L’a (eXan(an)) - W + H(x)

in C2.(Bo(1)\{0}) as @ — +o0, where A > 0 and H is a

harmonic function in By(1) which satisfies that H(0) = 0.



There exist C > 0, a sequence (N, ), of integers, and for any «,

critical points x1 o, ..., XN, Of Uy such that
n—2
2
(' {ninN dg (x,-,a,x)> ua(x) < C (1)
I=1,...;,Ne
for all x € M and all a. We have N, > 2. Define
dy= min  ds(Xiqa, X
« 1SI<JSNO( g( 1,00 ./’a)

and let the x; o's be such that d, = dg(x1,0,X2,). We have
d, — 0 as a — 4o00. Moreover,

n—2

da2 Uoz(Xl,a) — 400 (2)

as a — +o0.



Define i, by

Ua(x) = doj%z Ug, <eXPx17a(daX)) ,

where x € R". Let ¥, = 14 (0)ly. Then

. C
|Ag, Vol < WVC% ', (3)

where g, — § as &« — +00o. Because of

n—2

do? Un(x14) — 400, (2)

U4 (0) — 400 as a — +o0. Independently, by elliptic theory, for
any R >0,

Vo — G in Coe (Bo(R)\{Xi}i=1....p)

as a — 400, where, because of (3), G is nonnegative and
harmonic in Bo(R)\{Xi}i=1,... p-



Then,
G = H ’
(X) ; |X _ ;(i‘n—Z + (X)
where \; > 0 and H is harmonic without singularities.
particular, in a neighbourhood of 0,

PYR
= X2 + H(x) .

G(x)

By

(i:mi” dg(X"»m”) ta(x) < C

1,..,Na

n—2

do® Ua(X1,0) — +00

we can apply the main estimate with x, = x1 o and p, =

particular, H(0) = 0.

da
10°



However,

A1 A2 ~

|X|nf2 + |X _ )'“(2|an

9
=
VA
+
X
=

and

N ’X — )?2"7_2
By the maximum principle,

H(0) > min
9Bo(R)

I)

and we get that

~ A2 A1 A2
H > — — .
(O) — ’)“(2|n—2 Rn—2 (R _ |>"<2‘)n—2

By construction, |X2| = 1. Choosing R > 1 sufficiently large,
H(0) > 0. A contradiction.



It remains to prove the stability part in theorem 2. We introduced
(H1A) f > 0in M,

(H1B) (uq ) is bounded in H?,

(H2) Jeg > 0 s.t. uy > eg in M for all o,

and we proved that
(H1A) or (H1B), and (H2) = C%% — convergences

for the u,'s solutions of perturbations of (EL). Let (ELy)qn be any
perturbation of (EL), and (u,)n be any sequence of solution of
(ELy)q- It suffices to prove (H2). Let x, be such that

Ua(Xa) = min uy. Then Agua(Xxe) < 0 and we get that

1 an(xa)
Ua(Xa) < Uy (Xa)2*+1

In particular, u, > g9 > 0 and (H2) is satisfied. We can apply the
stability theorem. This proves the stability part of Theorem 2.

o) > n ka(xa)> T foo) () 2



V. Proof of the instability part in Theorem 2
We aim in proving:

When n > 6 the Einstein-scalar field Lichnerowicz equation

a
u2*+1

Agu+ hu = fu® 1 4
is not a priori stable.

Method: explicit constructions of examples.



A first construction.

Lemma 2: (Druet-H., Math. Z., 2008) Let (S", go) be the unit
sphere, n > 7. Let xg € S". Let a and ug be smooth positive
functions such that

n(n — 2) n(n—2) 54 a
2 upg = 2 Uy + F .

Ago ug +

There exist sequences (hy)a and (®o)a such that hy, — @ in
C%(S™), maxp o — +o0 and &, — 0 in C2_(S"\{x0}) as

o — +oo. In addition

n(n—2) 54 a

u + —=5
A

Ag g + houy =

for all o, where u, = ug + .



Proof of Lemma 2: Let ¢, be given by

n—2

B B2 -1 ’
Palx) = Ba — €0s dgy (X0, X) ’

where 8, > 1 for all @ and G, — 1 as a — +00. The ¢, s satisfy
n(n—2) n(n—2) 5_
o2, o2 e

Agypa +
Let
Uy = U + Qo + Ya
where 1), is such that

Agyup + Agypa + Dgytha

= n(n4_2)(uo + @a)Q*_l - (’7(”4_2) * €a> (t0.+ %)

a
—"_—* .
(UO +800¢)2 +1

We have ¢, — 0 as a — +00.



For any sequence (x4 ) of points in S”,

(n=2) 2
wa(xa)o( (o = )7 ) To(l). (1)

3
|
IS

(Ba — 1) + dgy (X0, Xa)?

Thanks to (1),

in C°(S") as a — +oc. For instance, either ¥, (x,) — 0 and
Ya(Xa)/Ua(Xa) — 0, or ¥4(xq) # 0. In that case, because of (1),
dgy (X0, Xa) — 0. Then, 9o(Xa)/Ua(Xa) — O since

¢a(Xa
Pa(Xa)

~—

< C((Ba = 1) + dey (0. 30)?) -



Let h, be such that

n(n—2) 5 4 a
Tua u§*+1

Ag g + houa =

for all . Write Agyuy = Agyup + Dgypa + Agya. By the
equation satisfied by 1),

(ha - n(n42)> Uy = O (Ui*leﬁa) + O (¢a) + €alia -

Divide by u,, and conclude thanks to

Ya 0 and w2 31y — 0
Uy

that h, — W in C% as & — +o00. This proves Lemma 2.

()

&



Say that (M, g) has a conformally flat pole at xq if g is
conformally flat around xg. Thanks to Lemma 2 we get:

Lemma 3: (Druet-H., Math. Z., 2008) Let (M, g) be a smooth
compact Riemannian manifold with a conformally flat pole, n > 7.
There exists 6 > 0 such that the Einstein-scalar Lichnerowicz
equation
n—2 o1 a

Agu—i—msgu: u + u2*+1
is not stable on (M, g) and possesses smooth positive solutions for
all smooth functions a > 0 such that ||alj; < .




VI. The case a > 0. Unpublished result.

When a > 0 in M: let u > 0 be a solution of (EL). Let xp be such
that u(xp) = miny u. Then Agu(xp) < 0 and

Go)lutoa) + [Fol ) 1 = 20
= there exists €9 = eg(h, f, a), 0 > 0, such that u > ¢ in M.
Question:Assume Ag + h is coercive, a > 0 and maxy f > 0.
What can we say when Zero(a) # () ?
In physics
a=|o+DW[+7?%,

where o and 7 are free data, and W is the determined data given
by the second equation in the system.



Recall (EL) is compact if any H!-bounded sequence (uy)q of
solutions of (EL) does possess a subsequence which converges in
C2. Recall (EL) is bounded and compact if any sequence (ug)q of
solutions of (EL) does possess a subsequence which converges in
2

Theorem 3: (Druet, Esposito, H., Pacard, Pollack, Collected
works - Unpublished, 2009) Assume A, + h is coercive, a > 0,
a# 0, and maxpy f > 0. Theorem 1 remains true without any
other assumptions than those of Theorem 1. Assuming that

n = 3,4,5, the equation is compact and even bounded and
compact when f > 0.

Existence follows from a combination of Theorem 1 and the sub
and supersolution method. Compactness follows from the stability
theorem in the proof of Theorem 2 together with an argument by
Pierpaolo Esposito.



Proof of the existence part in Theorem 3: Assume the
“assumptions” of Theorem 1 are satisfied: there exists ¢ > 0 such

that
C(n)

N a
@ / —rdv, < — 1
el me>E (S(h) maxp |f]) 1 (1)
and [, f©? dvg > 0. Changing a into a+ gg for 0 < g9 < 1, (1)

is still satisfied, and since a + g > 0 we can apply Theorem 1. In
particular,

(i) “a— a+¢0", 0 <eg <1, and Theorem 1
= Juy a supersolution of (EL).

Now let § > 0 and let ug solve
Aguo—i—huo:a—éf_

For 6 > 0 sufficiently small, ug is close to the solution with § = 0,
and since this solution is positive by the maximum principle, we get
that ug > 0 for 0 < § < 1. Fix such a 6 > 0.



Given € > 0, let u, = cug. Then

a

Ague + hu€ =¢ea—def ™ < fug*fl + i1
Uge

provided 0 < ¢ < 1. In particular,
(ii) u- = eup, 0 < e < 1, is a subsolution of (EL).

Noting that u. < u; for € > 0 sufficiently small, we can apply the
sub and supersolution method and get a solution u to (EL) such
that v, < u < uq. O

The compactness part in Theorem 3 follows from the stability
theorem in the proof of Theorem 2 together with the following
result by Esposito which establishes the (H2) property of Druet
and Hebey under general conditions.

We do not need in what follows the Cl7-convergence of the f,'s.
A CP-convergence (and even less) is enough.



Lemma 4: (Esposito, Unpublished, 2009) Let n < 5. Let (ELy)q
be a perturbation of (EL) and (uy)a a sequence of solutions of
(ELy)q. Assume aq >0 in M for all o, and a # 0. The (H2)
property holds true: deg > 0 such that u, > g in M for all .

Proof of the I(Nemma: Let K > O~be such that K+ h, > 1 in M for
all «. Define hy, = K+ hy, and h= K + h. Let § > 0 and vg, vo,
and r, be given by

Agv&S + hovl = aq — 0F;
Agv6 + v =a—6f,
Agroy + I~7ara =k, .

There holds that v0 — v in C°(M) as a — +o0 and that

vO — v%in C%(M) as § — 0. By the maximum principle, v > 0 in
M. It follows that there exists & > 0 sufficiently small, and g9 > 0,
such that vJ > &g in M for all @ > 1. Fixsuch a § > 0. Let t > 0



and define
Wq = tv&s + ro -

We have that r, — 0 in C°(M) as a@ — +00. There exists ty > 0
such that

Agwy + hoawe = tan — tof, + ka
_ 2*_1 aa
S —fa Wa + T“rl + ka
Wa
forall 0 < t < tg and all > 1. As a consequence, since a, > 0
in M,

Ag (ug — wy) + h, (Uq — Wa)

2¢—1 | - 2%—1 da da
zfaua +faWa + 2*+1_T+120
U Wq

for all &« > 1, at any point such that u, — w, < 0. The maximum
principle then gives that w, < u, in M for all & > 1. Since
W, > €g in M for e > 1, this ends the proof of the lemma. &



