Existence, stability and instability for Einstein-scalar field Lichnerowicz equations

by

Emmanuel Hebey

Joint works with
Olivier Druet
and with
Frank Pacard and Dan Pollack

Two hours lectures IAS, October 2008 Augmented June 2009

Contents:

Introduction and main results

Further directions and comments - 1

Further directions and comments - 2

Proof of Theorem 1

Proof of the stability part in Theorem 2

Proof of the instability part in Theorem 2

The case $a \ge 0$. Unpublished result.

Given Ψ scalar field, and $V(\Psi)$ a potential, Einstein-scalar field equations are written as:

$$G_{ij} = \nabla_i \Psi \nabla_j \Psi - \frac{1}{2} (\nabla^{\alpha} \Psi \nabla_{\alpha} \Psi) \gamma_{ij} - V(\Psi) \gamma_{ij}$$
,

where γ is the spacetime metric, and $G = Rc_{\gamma} - \frac{1}{2}S_{\gamma}\gamma$ is the Einstein curvature tensor. In the massive Klein-Gordon field theory,

$$V(\Psi) = \frac{1}{2}m^2\Psi^2 \ .$$

The constraint equations, using the conformal method, are

$$\frac{4(n-1)}{n-2} \Delta_g u + h(g, \psi) u = f(\psi, \tau) u^{2^*-1} + \frac{a(\sigma, W, \pi)}{u^{2^*+1}} , \quad (1)$$
$$\operatorname{div}_g(\mathcal{D}W) = \frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi , \quad (2)$$

where $\Delta_g = - {
m div}_g
abla$, $2^\star = 2n/(n-2)$,

$$h = S_g - |\nabla \psi|^2$$
, $a = |\sigma + \mathcal{D}W|^2 + \pi^2$, $f = 4V(\psi) - \frac{n-1}{n}\tau^2$

and S_g is the scalar curvature of g. Here, ψ , π and τ are functions connected to the physics setting (τ mean curvature of spacelike hypersurface), σ TT-tensor, W vector field, and $\mathcal D$ the conformal Killing operator given by

$$(\mathcal{D}W)_{ij} = (\nabla_i W)_j + (\nabla_j W)_i - \frac{2}{n} (\operatorname{div}_g W) g_{ij}$$
.

The system (1) - (2) is decoupled in the constant mean curvature setting, namely when $\tau = C^{te}$.

The free data are $(g, \sigma, \tau, \psi, \pi)$. The determined data are u and W. They satisfy

$$\frac{4(n-1)}{n-2} \Delta_g u + h(g, \psi) u = f(\psi, \tau) u^{2^*-1} + \frac{a(\sigma, W, \pi)}{u^{2^*+1}} , \quad (1)$$
$$\operatorname{div}_g(\mathcal{D}W) = \frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi . \quad (2)$$

More details available in the survey paper by Robert Bartnik and Jim Isenberg: *The constraint equations*, arXiv:gr-qc/0405092v1, 2004.

(M,g) compact, $\partial M = \emptyset$, $n \ge 3$. Let h, a, and f be arbitrary smooth functions in M. Assume a > 0. Consider

$$\Delta_g u + h u = f u^{2^* - 1} + \frac{a}{u^{2^* + 1}},$$
 (EL)

where $\Delta_g = - {\sf div}_g
abla$, and $2^\star = rac{2n}{n-2}$.

Example: (Sub and supersolution method, Choquet-Bruhat, Isenberg, Pollack, 2006). Assume $\Delta_g + h$ is coercive and $f \leq 0$. Let v > 0 and $u_0 > 0$ be such that

$$\Delta_g u_0 + h u_0 = v .$$

For t > 0, let $u_t = tu_0$. We have:

- (i) u_t is a subsolution of (*EL*) when $t \ll 1$, and
- (ii) u_t is a supersolution of (*EL*) when $t \gg 1$.

Since $u_t \leq u_{t'}$ when $t \leq t'$, the sub and supersolution method provides a solution " $u \in [u_t, u_{t'}]$ " for (EL).

Question: What can we say when $\Delta_g + h$ is coercive and either f changes sign or f is everywhere positive, i.e. when $\max_M f > 0$?

Assume $\Delta_g + h$ is coercive. Define

$$||u||_h^2 = \int_M (|\nabla u|^2 + hu^2) dv_g$$
,

 $u \in H^1$. Let S(h) to be the smallest constant such that

$$\left(\int_{M}|u|^{2^{\star}}dv_{g}\right)^{2/2^{\star}}\leq S(h)^{2/2^{\star}}\int_{M}\left(|\nabla u|^{2}+hu^{2}\right)dv_{g}$$

for all $u \in H^1$.

Theorem 1: (H.-Pacard-Pollack, Comm. Math. Phys., 2008) Let (M,g) be a smooth compact Riemannian manifold, $n \geq 3$. Let h, a, and f be smooth functions in M. Assume that $\Delta_g + h$ is coercive, that a > 0 in M, and that $\max_M f > 0$. There exists C = C(n), C > 0 depending only on n, such that if

$$\|\varphi\|_h^{2^*} \int_M \frac{a}{\varphi^{2^*}} dv_g < \frac{C(n)}{\left(S(h) \max_M |f|\right)^{n-1}}$$

and $\int_M f \varphi^{2^*} dv_g > 0$ for some smooth positive function $\varphi > 0$ in M, then the Einstein-scalar field Lichnerowicz equation (EL) possesses a smooth positive solution.

Example: if $\int_{\cal M} {\it fdv_{\rm g}} > 0$ then take $\varphi \equiv 1$ and the condition reads as

$$\int_{M} a dv_{g} < \frac{C(n,g,h)}{(\max_{M} |f|)^{n-1}} ,$$

where C(n,g,h)>0 depends on n, g and h.

A perturbation of (*EL*) is a sequence $(EL_{\alpha})_{\alpha}$ of equations, $\alpha \in \mathbb{N}$, which are written as

$$\Delta_g u + h_\alpha u = f_\alpha u^{2^* - 1} + \frac{a_\alpha}{u^{2^* + 1}} + k_\alpha \qquad (EL_\alpha)$$

for all α . Here we require that

$$h_{\alpha}
ightarrow h \; , \; a_{\alpha}
ightarrow a \; , \; k_{\alpha}
ightarrow 0$$

in C^0 as $\alpha \to +\infty$, and that $f_\alpha \to f$ in $C^{1,\eta}$ as $\alpha \to +\infty$, where $\eta > \frac{1}{2}$.

If (EL) satisfies the assumption of Theorem 1, any perturbation of (EL) also satisfies the assumptions of Theorem 1.

A sequence $(u_{\alpha})_{\alpha}$ is a sequence of solutions of $(EL_{\alpha})_{\alpha}$ if for any α , u_{α} solves (EL_{α}) .

Definition: (Elliptic stability) The Einstein-scalar field Lichnerowicz equation (EL) is said to be:

- (i) stable if for any perturbation $(EL_{\alpha})_{\alpha}$ of (EL), and any H^1 -bounded sequence $(u_{\alpha})_{\alpha}$ of smooth positive solutions of $(EL_{\alpha})_{\alpha}$, there exists a smooth positive solution u of (EL) such that, up to a subsequence, $u_{\alpha} \to u$ in $C^{1,\theta}(M)$ for all $\theta \in (0,1)$, and
- (ii) bounded and stable if for any perturbation $(EL_{\alpha})_{\alpha}$ of (EL), and any sequence $(u_{\alpha})_{\alpha}$ of smooth positive solutions of $(EL_{\alpha})_{\alpha}$, the sequence $(u_{\alpha})_{\alpha}$ is bounded in H^1 and there exists a smooth positive solution u of (EL) such that, up to a subsequence, $u_{\alpha} \to u$ in $C^{1,\theta}(M)$ for all $\theta \in (0,1)$.

Remark 1: Assuming stronger convergences for the h_{α} 's, f_{α} 's, etc., then we get stronger convergences for the u_{α} 's. E.g., if $h_{\alpha} \to h$, $f_{\alpha} \to f$, $a_{\alpha} \to a$ and $k_{\alpha} \to 0$ in $C^{p,\theta}$, $p \in \mathbb{N}$ and $\theta \in (0,1)$, then $u_{\alpha} \to u$ in $C^{p+2,\theta'}$, $\theta' < \theta$.

Remark 2: Stability means that if you slightly perturb h, a, and f, and even if you add to the equation a small "background noise" represented by k, then, in doing so, you do note create solutions which stand far from a solution of the original equation.

Remark 3: Say (*EL*) is compact if any H^1 -bounded sequence $(u_\alpha)_\alpha$ of solutions of (*EL*) does possess a subsequence which converges in C^2 . Say (*EL*) is bounded and compact if any sequence $(u_\alpha)_\alpha$ of solutions of (*EL*) does possess a subsequence which converges in C^2 . Stability implies compactness. Bounded stability implies bounded compactness.

Let $\mathcal{D} = C^{\infty}(M)^4$ and $\|\cdot\|_{\mathcal{D}}$ be given by

$$||D||_{\mathcal{D}} = \sum_{i=1}^{3} ||f_{i}||_{C^{0,1}} + ||f_{4}||_{C^{1,1}}$$

for all $D = (f_1, f_2, f_3, f_4) \in \mathcal{D}$. For D = (h, a, k, f) in \mathcal{D} consider

$$\Delta_g u + hu = fu^{2^*-1} + \frac{a}{u^{2^*+1}} + k$$
 (EL')

If D = (h, a, 0, f), then (EL') = (EL). Let $\Lambda > 0$, D = (h, a, k, f) in \mathcal{D} , and define

$$\mathcal{S}_{D,\Lambda} = \left\{ u \text{ solution of } (EL') \text{ s.t. } \|u\|_{H^1} \leq \Lambda \right\},$$
 and $\mathcal{S}_D = \left\{ u \text{ solution of } (EL') \right\}.$

When D = (h, a, 0, f) we recover solutions of (EL).

For $X, Y \subset C^2$ define

$$d_{C^2}^{\hookrightarrow}(X;Y) = \sup_{u \in X} \inf_{v \in Y} \|v - u\|_{C^2}.$$

By convention, $d_{C^2}^{\hookrightarrow}(X;\emptyset) = +\infty$ if $X \neq \emptyset$, and $d_{C^2}^{\hookrightarrow}(\emptyset;Y) = 0$ for all Y, including $Y = \emptyset$.

Let D = (h, a, 0, f) be given.

Stability
$$\Leftrightarrow$$
 (*EL*) is compact and $\forall \varepsilon > 0, \ \forall \Lambda > 0, \ \exists \delta > 0 \ \text{s.t.} \ \forall D' = (h', a', k', f') \in \mathcal{D}, \ \|D' - D\|_{\mathcal{D}} < \delta \ \Rightarrow \ d_{C^2}^{\hookrightarrow}(\mathcal{S}_{D',\Lambda}; \mathcal{S}_{D,\Lambda}) < \varepsilon \ .$

Bounded stability \Leftrightarrow (*EL*) is bounded compact and $\forall \varepsilon > 0, \ \exists \delta > 0 \text{ s.t. } \forall D' = (h', a', k', f') \in \mathcal{D}, \ \|D' - D\|_{\mathcal{D}} < \delta \ \Rightarrow \ d_{C^2}^{\hookrightarrow}(\mathcal{S}_{D'}; \mathcal{S}_D) < \varepsilon \ .$

Theorem 2: (Druet-H., Math. Z., 2008) Let (M,g) be a smooth compact Riemannian manifold of dimension $n \ge 3$, and $h, a, f \in C^{\infty}(M)$ be smooth functions in M with a > 0. Assume n = 3, 4, 5. Then the Einstein-scalar field Lichnerowicz equation

$$\Delta_g u + hu = fu^{2^*-1} + \frac{a}{u^{2^*+1}}$$
 (EL)

is stable. The equation is even bounded and stable assuming in addition that f>0 in M. On the contrary, (EL) is not anymore stable a priori when $n\geq 6$.

I. Further directions and comments - 1

Lemma 1: (H.-Pacard-Pollack, Comm. Math. Phys., 2008) Assume $a \ge 0$, f > 0, and

$$\frac{n^n}{(n-1)^{n-1}} \left(\int_M a^{\frac{n+2}{4n}} f^{\frac{3n-2}{4n}} dv_g \right)^{\frac{4n}{n+2}} > \left(\int_M \frac{(h^+)^{\frac{n+2}{4}} dv_g}{f^{\frac{n-2}{4}}} \right)^{\frac{4n}{n+2}}.$$

Then the Einstein-scalar field Lichnerowicz equation (EL) does not possess solutions.

In particular, for any h, and any f > 0, there exist a positive constante C = C(n, g, h, f) such that if

$$\int_{M} a^{\frac{n+2}{4n}} dv_{g} \geq C ,$$

then (EL) does not possess solutions.

Proof: Integrating (*EL*),

$$\int_M f u^{2^\star-1} dv_g + \int_M \frac{a dv_g}{u^{2^\star+1}} = \int_M h u dv_g \ .$$

By Hölder's inequalities,

$$\int_{M} hudv_{g} \leq \left(\int_{M} \frac{(h^{+})^{\frac{n+2}{4}} dv_{g}}{f^{\frac{n-2}{4}}}\right)^{\frac{4}{n+2}} \left(\int_{M} fu^{2^{\star}-1} dv_{g}\right)^{\frac{n-2}{n+2}}, \text{ and}$$

$$\int_{M} a^{\frac{n+2}{4n}} f^{\frac{3n-2}{4n}} dv_{g} \leq \left(\int_{M} fu^{2^{\star}-1} dv_{g}\right)^{\frac{3n-2}{4n}} \left(\int_{M} \frac{a dv_{g}}{u^{2^{\star}+1}}\right)^{\frac{n+2}{4n}}.$$

$$X + \left(\int_{M} a^{\frac{n+2}{4n}} f^{\frac{3n-2}{4n}} dv_{g}\right)^{\frac{4n}{n+2}} X^{1-n} \leq \left(\int_{M} \frac{(h^{+})^{\frac{n+2}{4}} dv_{g}}{f^{\frac{n-2}{4}}}\right)^{\frac{4}{n+2}},$$

where

$$X = \left(\int_{M} fu^{2^{\star}-1} dv_{g}\right)^{\frac{\tau}{n+2}}.$$

This implies

$$\frac{n^n}{(n-1)^{n-1}} \left(\int_M a^{\frac{n+2}{4n}} f^{\frac{3n-2}{4n}} dv_g \right)^{\frac{4n}{n+2}} \leq \left(\int_M \frac{(h^+)^{\frac{n+2}{4}} dv_g}{f^{\frac{n-2}{4}}} \right)^{\frac{4n}{n+2}} . \diamondsuit$$

II. Further directions and comments - 2

Fix h, a and f. Assume $\Delta_g + h$ is coercive, and a, f > 0. Let t > 0 and consider

$$\Delta_g u + h u = f u^{2^* - 1} + \frac{t a}{u^{2^* + 1}}$$
 (EL_t)

According to Theorem 1 and the Lemma:

- (i) (Theorem 1) for $t \ll 1$, (EL_t) possesses a solution,
- (ii) (Lemma 1) for $t\gg 1$, (EL_t) does not possess any solution.

Assuming n = 3, 4, 5,

(iii) (Theorem 2) $(EL_t)_t$ is bounded and stable for $t \in [t_0, t_1]$,

where $0 < t_0 < t_1$.

Let $\Lambda > 0$. Define

$$\Omega_{\Lambda} = \left\{ u \in \mathit{C}^{2,\theta} \text{ s.t. } \|u\|_{\mathit{C}^{2,\theta}} < \Lambda \text{ and } \min_{\mathit{M}} u > \Lambda^{-1} \right\} \ .$$

Fix $t_0 \ll 1$ such that (EL_{t_0}) possesses a solution. Fix $t_1 \gg 1$ such that (EL_{t_1}) does not possess any solution. Assume n=3,4,5. Define $F_t: \overline{\Omega_\Lambda} \to C^{2,\theta}$ by

$$F_t u = u - L^{-1} \left(f u^{2^*-1} + \frac{ta}{u^{2^*+1}} \right) ,$$

where $L=\Delta_g+h$, and $t\in[t_0,t_1]$. By (iii), there exists $\Lambda_0>0$ such that $F_t^{-1}(0)\subset\Omega_{\Lambda_0}$ for all $t\in[t_0,t_1]$. Then, by (ii),

$$\deg(F_{t_0},\Omega_{\Lambda},0)=0$$

for all $\Lambda\gg 1$. In particular, assuming that the solutions of the equations are nondegenerate, the solution in Theorem 1 needs to come with another solution.

III. Proof of Theorem 1

We aim in proving:

Let (M,g) be a smooth compact Riemannian manifold, $n \geq 3$. Let h, a, and f be smooth functions in M. Assume that $\Delta_g + h$ is coercive, that a > 0 in M, and that $\max_M f > 0$. There exists C = C(n), C > 0 depending only on n, such that if

$$\|\varphi\|_h^{2^*} \int_M \frac{a}{\varphi^{2^*}} dv_g < \frac{C(n)}{\left(S(h) \max_M |f|\right)^{n-1}}$$

and $\int_M f \varphi^{2^\star} dv_g > 0$ for some smooth positive function $\varphi > 0$ in M, then the Einstein-scalar field Lichnerowicz equation

$$\Delta_g u + h u = f u^{2^* - 1} + \frac{a}{u^{2^* + 1}}$$
 (EL)

possesses a smooth positive solution.

Method: approximated equations, mountain pass analysis.

Fix $\varepsilon > 0$. Define

$$I^{(1)}(u) = rac{1}{2} \int_{M} \left(|\nabla u|^2 + hu^2
ight) dv_g - rac{1}{2^{\star}} \int_{M} f(u^+)^{2^{\star}} dv_g \; ,$$

and

$$I_{\varepsilon}^{(2)}(u) = \frac{1}{2^{\star}} \int_{M} \frac{a d v_{g}}{(\varepsilon + (u^{+})^{2})^{2^{\star}/2}} ,$$

where $u \in H^1$. Let

$$I_{\varepsilon}=I^{(1)}+I_{\varepsilon}^{(2)}$$
.

Let $\varphi > 0$ be as in Theorem 1. Assume $\|\varphi\|_h = 1$. The conditions in the theorem read as

$$\int_{M} \frac{a}{\varphi^{2^{\star}}} d\nu_{g} < \frac{C(n)}{\left(S(h) \max_{M} |f|\right)^{n-1}} \tag{1}$$

and $\int_M f \varphi^{2^*} dv_g > 0$.

Let $\Phi, \Psi : \mathbb{R}^+ \to \mathbb{R}$ be the functions given by

$$\Phi(t) = rac{1}{2}t^2 - rac{ ext{max}_M |f|}{2^\star} S(h) t^{2^\star} \;, \; ext{and} \ \Psi(t) = rac{1}{2}t^2 + rac{ ext{max}_M |f|}{2^\star} S(h) t^{2^\star} \;.$$

These functions satisfy

$$\Phi(\|u\|_h) \le I^{(1)}(u) \le \Psi(\|u\|_h) \tag{2}$$

for all $u \in H^1$. Let $t_1 > 0$ be such that Φ is increasing up to t_1 and decreasing after:

$$t_1 = \left(S(h) \max_{M} |f|\right)^{-(n-2)/4}.$$

Let $t_0 > 0$ be given by

$$t_0 = \sqrt{\frac{1}{2(n-1)}} t_1$$
.

Then

$$\Psi(t_0) \le \frac{1}{2}\Phi(t_1) \tag{3}$$

and for $C \ll 1$ the condition in the theorem translates into

$$\frac{1}{2^{\star}} \int_{M} \frac{a}{(t_0 \varphi)^{2^{\star}}} d\nu_{g} < \frac{1}{2} \Phi(t_1) . \tag{4}$$

Let $\rho = \Phi(t_1)$. Then, by (3) and (4),

$$I_{\varepsilon}(t_0\varphi)<\rho$$

and by

$$\Phi(\|u\|_h) \le I^{(1)}(u) \le \Psi(\|u\|_h) , \qquad (2)$$

we can write that

$$I_{\varepsilon}(u) \geq \rho$$

for all u s.t. $||u||_h = t_1$.

We got that there exists $\rho > 0$ such that

$$I_{\varepsilon}(t_0\varphi)<\rho$$

and

$$I_{\varepsilon}(u) \geq \rho$$

for all u s.t. $||u||_h = t_1$. Also $t_1 > t_0$. Since $\int_M f \varphi^{2^*} dv_g > 0$,

$$I_{arepsilon}(tarphi) o -\infty$$

as $t \to +\infty$.

 \Rightarrow We can apply the mountain pass lemma.

Let $t_2 \gg 1$. Define

$$c_{\varepsilon} = \inf_{\gamma \in \Gamma} \max_{u \in \gamma} I_{\varepsilon}(u)$$

where Γ is the set of continuous paths joining $t_0\varphi$ to $t_2\varphi$. The MPL provides a Palais-Smale sequence $(u_k^\varepsilon)_k$ such that

$$I_arepsilon(u_k^arepsilon) o c_arepsilon$$
 and $I_arepsilon'(u_k^arepsilon) o 0$

as $k \to +\infty$. The sequence $(u_k^{\varepsilon})_k$ is bounded in H^1 . Up to a subsequence, $u_k^{\varepsilon} \rightharpoonup u_{\varepsilon}$ in H^1 . Then u_{ε} satisfies

$$\Delta_{g} u_{\varepsilon} + h u_{\varepsilon} = f u_{\varepsilon}^{2^{*}-1} + \frac{a u_{\varepsilon}}{\left(\varepsilon + u_{\varepsilon}^{2}\right)^{\frac{2^{*}}{2}+1}}$$

In particular, u_{ε} is positive and smooth.

We can prove that the c_{ε} 's are bounded independently of ε . In particular the family $(u_{\varepsilon})_{\varepsilon}$ is bounded in H^1 . Now we can pass to the limit as $\varepsilon \to 0$ because u_{ε} will never approach zero. Take $x_{\varepsilon} \in M$ such that $u_{\varepsilon}(x_{\varepsilon}) = \min_{M} u_{\varepsilon}$. Then $\Delta_{g} u_{\varepsilon}(x_{\varepsilon}) \leq 0$ and

$$|h(x_{\varepsilon})|+|f(x_{\varepsilon})|\,u_{\varepsilon}(x_{\varepsilon})^{2^{\star}-2}\geq \frac{a(x_{\varepsilon})}{(\varepsilon+u_{\varepsilon}(x_{\varepsilon})^{2})^{\frac{2^{\star}}{2}+1}}.$$

This implies that there exists $\delta_0 > 0$ such that

$$\min_{M} u_{\varepsilon} \geq \delta_0$$

for all ε . If $u_{\varepsilon} \rightharpoonup u$ in H^1 , then $u \ge \delta_0$ and u solves (EL).

IV. Proof of the stability part in Theorem 2

We aim in proving:

Let (M,g) be a smooth compact Riemannian manifold of dimension $n \geq 3$, and $h, a, f \in C^{\infty}(M)$ be smooth functions in M with a > 0. Assume n = 3, 4, 5. Then the Einstein-scalar field Lichnerowicz equation

$$\Delta_g u + hu = fu^{2^*-1} + \frac{a}{u^{2^*+1}}$$
 (EL)

is stable, and even bounded and stable if f > 0 in M.

Method: blow-up analysis, sharp pointwise estimates.

Let $(EL_{\alpha})_{\alpha}$ be a perturbation of (EL). Let also $(u_{\alpha})_{\alpha}$ be a sequence of solutions of (EL_{α}) . Consider

(H1A) f > 0 in M,

(H1B) $(u_{\alpha})_{\alpha}$ is bounded in H^1 ,

(H2) $\exists \varepsilon_0 > 0$ s.t. $u_\alpha \geq \varepsilon_0$ in M for all α .

We claim that:

Stability Theorem: (Druet-H., Math. Z., 2008) Let $n \leq 5$. Let $(EL_{\alpha})_{\alpha}$ be a perturbation of (EL) and $(u_{\alpha})_{\alpha}$ a sequence of solutions of $(EL_{\alpha})_{\alpha}$. Assume (H1A) or (H1B), and we also assume (H2). Then the sequence $(u_{\alpha})_{\alpha}$ is uniformly bounded in $C^{1,\theta}$, $\theta \in (0,1)$.

By (H2),

$$|\Delta_g u_{\alpha}| \leq C u_{\alpha}^{2^*-1}$$
,

where C > 0 does not depend on α .

Proof of stability theorem: By contradiction. We assume that $\|u_{\alpha}\|_{\infty} \to +\infty$ as $\alpha \to +\infty$. We also assume (H1A) or (H1B), and (H2). Let $(x_{\alpha})_{\alpha}$ and $(\rho_{\alpha})_{\alpha}$ be such that

- (i) x_{α} is a critical point of u_{α} for all α ,
- (ii) $ho_{lpha}^{rac{n-2}{2}} \sup_{\mathcal{B}_{\mathbf{x}_{\alpha}}(
 ho_{lpha})} u_{lpha} o +\infty$ as $lpha o +\infty$, and
- (iii) $d_{\mathfrak{g}}(x_{\alpha}, x)^{\frac{n-2}{2}} u_{\alpha}(x) \leq C$ for all $x \in B_{X_{\alpha}}(\rho_{\alpha})$ and all α .

Then:

Main Estimate: Assume (i) – (iii). Then we have that $\rho_{\alpha} \rightarrow 0$, $ho_{lpha}^{rac{n-2}{2}}u_{lpha}(x_{lpha})
ightarrow +\infty$, and

$$u_{\alpha}(x_{\alpha})\rho_{\alpha}^{n-2}u_{\alpha}\left(\exp_{x_{\alpha}}(\rho_{\alpha}x)\right) \to \frac{\lambda}{|x|^{n-2}} + H(x)$$

in $C_{loc}^2\left(B_0(1)\backslash\{0\}\right)$ as $\alpha\to+\infty$, where $\lambda>0$ and H is a harmonic function in $B_0(1)$ which satisfies that H(0) = 0.

There exist C>0, a sequence $(N_{\alpha})_{\alpha}$ of integers, and for any α , critical points $x_{1,\alpha},\ldots,x_{N_{\alpha},\alpha}$ of u_{α} such that

$$\left(\min_{i=1,\ldots,N_{\alpha}} d_{g}\left(x_{i,\alpha},x\right)\right)^{\frac{n-2}{2}} u_{\alpha}(x) \leq C \tag{1}$$

for all $x \in M$ and all α . We have $N_{\alpha} \geq 2$. Define

$$d_{\alpha} = \min_{1 \leq i < j \leq N_{\alpha}} d_{g}(x_{i,\alpha}, x_{j,\alpha})$$

and let the $x_{i,\alpha}$'s be such that $d_{\alpha}=d_{g}(x_{1,\alpha},x_{2,\alpha})$. We have $d_{\alpha}\to 0$ as $\alpha\to +\infty$. Moreover,

$$d_{\alpha}^{\frac{n-2}{2}}u_{\alpha}(x_{1,\alpha})\to +\infty \tag{2}$$

as $\alpha \to +\infty$.

Define \tilde{u}_{α} by

$$\tilde{u}_{\alpha}(x) = d_{\alpha}^{\frac{n-2}{2}} u_{\alpha} \left(\exp_{x_{1,\alpha}}(d_{\alpha}x) \right) ,$$

where $x \in \mathbb{R}^n$. Let $\tilde{v}_{\alpha} = \tilde{u}_{\alpha}(0)\tilde{u}_{\alpha}$. Then

$$|\Delta_{\tilde{g}_{\alpha}}\tilde{v}_{\alpha}| \leq \frac{C}{\tilde{u}_{\alpha}(0)^{2^{\star}-2}}\tilde{v}_{\alpha}^{2^{\star}-1}, \qquad (3)$$

where $\tilde{g}_{\alpha} \to \delta$ as $\alpha \to +\infty$. Because of

$$d_{\alpha}^{\frac{n-2}{2}}u_{\alpha}(x_{1,\alpha}) \to +\infty , \qquad (2)$$

 $\tilde{u}_{\alpha}(0) \to +\infty$ as $\alpha \to +\infty$. Independently, by elliptic theory, for any R>0,

$$\tilde{v}_{\alpha} \to G$$
 in $C^1_{loc}(B_0(R) \setminus \{\tilde{x}_i\}_{i=1,\ldots,p})$

as $\alpha \to +\infty$, where, because of (3), G is nonnegative and harmonic in $B_0(R) \setminus \{\tilde{x}_i\}_{i=1,\dots,p}$.

Then,

$$G(x) = \sum_{i=1}^{p} \frac{\lambda_i}{|x - \tilde{x}_i|^{n-2}} + H(x) ,$$

where $\lambda_i > 0$ and H is harmonic without singularities. In particular, in a neighbourhood of 0,

$$G(x) = \frac{\lambda_1}{|x|^{n-2}} + \tilde{H}(x) .$$

Ву

$$\left(\min_{i=1,\ldots,N_{\alpha}} d_{g}\left(x_{i,\alpha},x\right)\right)^{\frac{n-2}{2}} u_{\alpha}(x) \leq C \tag{1}$$

$$d_{\alpha}^{\frac{n-2}{2}}u_{\alpha}(x_{1,\alpha}) \to +\infty \tag{2}$$

we can apply the main estimate with $x_{\alpha}=x_{1,\alpha}$ and $\rho_{\alpha}=\frac{d_{\alpha}}{10}$. In particular, $\tilde{H}(0)=0$.

However.

$$G(x) = \frac{\lambda_1}{|x|^{n-2}} + \frac{\lambda_2}{|x - \tilde{x}_2|^{n-2}} + \hat{H}(x)$$

 ≥ 0

and

$$\tilde{H}(x) = \frac{\lambda_2}{|x - \tilde{x}_2|^{n-2}} + \hat{H}(x) .$$

By the maximum principle,

$$\hat{H}(0) \geq \min_{\partial B_0(R)} \hat{H}$$

and we get that

$$\tilde{H}(0) \ge \frac{\lambda_2}{|\tilde{x}_2|^{n-2}} - \frac{\lambda_1}{R^{n-2}} - \frac{\lambda_2}{(R - |\tilde{x}_2|)^{n-2}}$$
.

By construction, $|\tilde{x}_2| = 1$. Choosing $R \gg 1$ sufficiently large,

H(0) > 0. A contradiction.

It remains to prove the stability part in theorem 2. We introduced (H1A) f>0 in M,

(H1B) $(u_{\alpha})_{\alpha}$ is bounded in H^1 ,

(H2) $\exists \varepsilon_0 > 0$ s.t. $u_\alpha \geq \varepsilon_0$ in M for all α ,

and we proved that

$$(H1A)$$
 or $(H1B)$, and $(H2) \Rightarrow C^{1,\theta}$ – convergences

for the u_{α} 's solutions of perturbations of (EL). Let $(EL_{\alpha})_{\alpha}$ be any perturbation of (EL), and $(u_{\alpha})_{\alpha}$ be any sequence of solution of $(EL_{\alpha})_{\alpha}$. It suffices to prove (H2). Let x_{α} be such that $u_{\alpha}(x_{\alpha}) = \min u_{\alpha}$. Then $\Delta_g u_{\alpha}(x_{\alpha}) \leq 0$ and we get that

$$h_{\alpha}(x_{\alpha}) \geq \frac{1}{u_{\alpha}(x_{\alpha})} \left(\frac{a_{\alpha}(x_{\alpha})}{u_{\alpha}(x_{\alpha})^{2^{*}+1}} + k_{\alpha}(x_{\alpha}) \right) + f_{\alpha}(x_{\alpha})u_{\alpha}(x_{\alpha})^{2^{*}-2}.$$

In particular, $u_{\alpha} \geq \varepsilon_0 > 0$ and (H2) is satisfied. We can apply the stability theorem. This proves the stability part of Theorem 2.

V. Proof of the instability part in Theorem 2

We aim in proving:

When $n \ge 6$ the Einstein-scalar field Lichnerowicz equation

$$\Delta_g u + h u = f u^{2^* - 1} + \frac{a}{u^{2^* + 1}}$$
 (EL)

is not a priori stable.

Method: explicit constructions of examples.

A first construction.

Lemma 2: (Druet-H., Math. Z., 2008) Let (S^n, g_0) be the unit sphere, $n \ge 7$. Let $x_0 \in S^n$. Let a and u_0 be smooth positive functions such that

$$\Delta_{g_0} u_0 + \frac{n(n-2)}{4} u_0 = \frac{n(n-2)}{4} u_0^{2^*-1} + \frac{a}{u_0^{2^*+1}}.$$

There exist sequences $(h_{\alpha})_{\alpha}$ and $(\Phi_{\alpha})_{\alpha}$ such that $h_{\alpha} \to \frac{n(n-2)}{4}$ in $C^0(S^n)$, $\max_M \Phi_{\alpha} \to +\infty$ and $\Phi_{\alpha} \to 0$ in $C^2_{loc}(S^n \setminus \{x_0\})$ as $\alpha \to +\infty$. In addition

$$\Delta_{g_0} u_{\alpha} + h_{\alpha} u_{\alpha} = \frac{n(n-2)}{4} u_{\alpha}^{2^*-1} + \frac{a}{u_{\alpha}^{2^*+1}}$$

for all α , where $u_{\alpha} = u_0 + \Phi_{\alpha}$.

Proof of Lemma 2: Let φ_{α} be given by

$$\varphi_{\alpha}(x) = \left(\frac{\sqrt{\beta_{\alpha}^2 - 1}}{\beta_{\alpha} - \cos d_{g_0}(x_0, x)}\right)^{\frac{n-2}{2}},$$

where $\beta_{\alpha} > 1$ for all α and $\beta_{\alpha} \to 1$ as $\alpha \to +\infty$. The φ_{α} 's satisfy

$$\Delta_{g_0}\varphi_{\alpha}+\frac{n(n-2)}{4}\varphi_{\alpha}=\frac{n(n-2)}{4}\varphi_{\alpha}^{2^{\star}-1}.$$

Let

$$u_{\alpha} = u_0 + \varphi_{\alpha} + \psi_{\alpha} ,$$

where ψ_{α} is such that

$$\begin{split} &\Delta_{g_0} u_0 + \Delta_{g_0} \varphi_\alpha + \Delta_{g_0} \psi_\alpha \\ &= \frac{n(n-2)}{4} (u_0 + \varphi_\alpha)^{2^*-1} - \left(\frac{n(n-2)}{4} + \varepsilon_\alpha\right) (u_0 + \varphi_\alpha) \\ &+ \frac{a}{(u_0 + \varphi_\alpha)^{2^*+1}} \ . \end{split}$$

We have $\varepsilon_{\alpha} \to 0$ as $\alpha \to +\infty$.

For any sequence $(x_{\alpha})_{\alpha}$ of points in S^n ,

$$|\psi_{\alpha}(x_{\alpha})| = o\left(\left(\frac{(\beta_{\alpha}-1)^{\frac{(n-2)}{2(n-4)}}}{(\beta_{\alpha}-1)+d_{g_0}(x_0,x_{\alpha})^2}\right)^{\frac{n-4}{2}}\right) + o(1).$$
 (1)

Thanks to (1),

$$\frac{\psi_{\alpha}}{u_{\alpha}} \to 0 \text{ and } u_{\alpha}^{2^{*}-3}\psi_{\alpha} \to 0$$
 (2)

in $C^0(S^n)$ as $\alpha \to +\infty$. For instance, either $\psi_{\alpha}(x_{\alpha}) \to 0$ and $\psi_{\alpha}(x_{\alpha})/u_{\alpha}(x_{\alpha}) \to 0$, or $\psi_{\alpha}(x_{\alpha}) \not\to 0$. In that case, because of (1), $d_{g_0}(x_0,x_{\alpha}) \to 0$. Then, $\psi_{\alpha}(x_{\alpha})/u_{\alpha}(x_{\alpha}) \to 0$ since

$$rac{\psi_{lpha}(x_{lpha})}{arphi_{lpha}(x_{lpha})} \leq C^{ ext{te}}\Big((eta_{lpha}-1)+d_{g_0}(x_0,x_{lpha})^2\Big) \;.$$

Let h_{α} be such that

$$\Delta_{g_0} u_{\alpha} + h_{\alpha} u_{\alpha} = \frac{n(n-2)}{4} u_{\alpha}^{2^*-1} + \frac{a}{u_{\alpha}^{2^*+1}}$$

for all α . Write $\Delta_{g_0}u_{\alpha}=\Delta_{g_0}u_0+\Delta_{g_0}\varphi_{\alpha}+\Delta_{g_0}\psi_{\alpha}$. By the equation satisfied by ψ_{α} ,

$$\left(h_{\alpha}-rac{n(n-2)}{4}
ight)u_{lpha}=O\left(u_{lpha}^{2^{\star}-2}\psi_{lpha}
ight)+O\left(\psi_{lpha}
ight)+arepsilon_{lpha}u_{lpha}\ .$$

Divide by u_{α} , and conclude thanks to

$$\frac{\psi_{\alpha}}{u_{\alpha}} \to 0 \quad \text{and} \quad u_{\alpha}^{2^{\star}-3} \psi_{\alpha} \to 0 \tag{2}$$

that $h_{\alpha} \to \frac{n(n-2)}{4}$ in C^0 as $\alpha \to +\infty$. This proves Lemma 2.

Say that (M, g) has a conformally flat pole at x_0 if g is conformally flat around x_0 . Thanks to Lemma 2 we get:

Lemma 3: (Druet-H., Math. Z., 2008) Let (M,g) be a smooth compact Riemannian manifold with a conformally flat pole, $n \ge 7$. There exists $\delta > 0$ such that the Einstein-scalar Lichnerowicz equation

$$\Delta_g u + \frac{n-2}{4(n-1)} S_g u = u^{2^*-1} + \frac{a}{u^{2^*+1}}$$

is not stable on (M,g) and possesses smooth positive solutions for all smooth functions a>0 such that $\|a\|_1<\delta$.

VI. The case $a \ge 0$. Unpublished result.

When a>0 in M: let u>0 be a solution of (*EL*). Let x_0 be such that $u(x_0)=\min_M u$. Then $\Delta_g u(x_0)\leq 0$ and

$$|h(x_0)|u(x_0)+|f(x_0)|u(x_0)^{2^{\star}-1}\geq \frac{a(x_0)}{u(x_0)^{2^{\star}+1}}$$

 \Rightarrow there exists $\varepsilon_0 = \varepsilon_0(h, f, a)$, $\varepsilon_0 > 0$, such that $u \ge \varepsilon_0$ in M.

Question: Assume $\Delta_g + h$ is coercive, $a \ge 0$ and $\max_M f > 0$. What can we say when $Zero(a) \ne \emptyset$?

In physics

$$a = |\sigma + DW|^2 + \pi^2 ,$$

where σ and π are free data, and W is the determined data given by the second equation in the system.

Recall (*EL*) is compact if any H^1 -bounded sequence $(u_\alpha)_\alpha$ of solutions of (*EL*) does possess a subsequence which converges in C^2 . Recall (*EL*) is bounded and compact if any sequence $(u_\alpha)_\alpha$ of solutions of (*EL*) does possess a subsequence which converges in C^2 .

Theorem 3: (Druet, Esposito, H., Pacard, Pollack, Collected works - Unpublished, 2009) Assume $\Delta_g + h$ is coercive, $a \ge 0$, $a \ne 0$, and $\max_M f > 0$. Theorem 1 remains true without any other assumptions than those of Theorem 1. Assuming that n = 3, 4, 5, the equation is compact and even bounded and compact when f > 0.

Existence follows from a combination of Theorem 1 and the sub and supersolution method. Compactness follows from the stability theorem in the proof of Theorem 2 together with an argument by Pierpaolo Esposito.

Proof of the existence part in Theorem 3: Assume the "assumptions" of Theorem 1 are satisfied: there exists $\varphi>0$ such that

$$\|\varphi\|_h^{2^*} \int_M \frac{a}{\varphi^{2^*}} d\nu_g < \frac{C(n)}{\left(S(h) \max_M |f|\right)^{n-1}} \tag{1}$$

and $\int_M f \varphi^{2^*} dv_g > 0$. Changing a into $a + \varepsilon_0$ for $0 < \varepsilon_0 \ll 1$, (1) is still satisfied, and since $a + \varepsilon_0 > 0$ we can apply Theorem 1. In particular,

(i) " $a \rightarrow a + \varepsilon_0$ ", $0 < \varepsilon_0 \ll 1$, and Theorem 1 $\Rightarrow \exists u_1$ a supersolution of (*EL*).

Now let $\delta > 0$ and let u_0 solve

$$\Delta_g u_0 + h u_0 = a - \delta f^-$$

For $\delta>0$ sufficiently small, u_0 is close to the solution with $\delta=0$, and since this solution is positive by the maximum principle, we get that $u_0>0$ for $0<\delta\ll 1$. Fix such a $\delta>0$.

Given $\varepsilon > 0$, let $u_{\varepsilon} = \varepsilon u_0$. Then

$$\Delta_{g} u_{\varepsilon} + h u_{\varepsilon} = \varepsilon a - \delta \varepsilon f^{-} \le f u_{\varepsilon}^{2^{*}-1} + \frac{a}{u_{\varepsilon}^{2^{*}+1}}$$

provided $0 < \varepsilon \ll 1$. In particular,

(ii)
$$u_{\varepsilon} = \varepsilon u_0$$
, $0 < \varepsilon \ll 1$, is a subsolution of (*EL*).

Noting that $u_{\varepsilon} \leq u_1$ for $\varepsilon > 0$ sufficiently small, we can apply the sub and supersolution method and get a solution u to (*EL*) such that $u_{\varepsilon} \leq u \leq u_1$.

The compactness part in Theorem 3 follows from the stability theorem in the proof of Theorem 2 together with the following result by Esposito which establishes the (H2) property of Druet and Hebey under general conditions.

We do not need in what follows the $C^{1,\eta}$ -convergence of the f_{α} 's. A C^0 -convergence (and even less) is enough.

Lemma 4: (Esposito, Unpublished, 2009) Let $n \leq 5$. Let $(EL_{\alpha})_{\alpha}$ be a perturbation of (EL) and $(u_{\alpha})_{\alpha}$ a sequence of solutions of $(EL_{\alpha})_{\alpha}$. Assume $a_{\alpha} \geq 0$ in M for all α , and $a \not\equiv 0$. The (H2) property holds true: $\exists \varepsilon_0 > 0$ such that $u_{\alpha} \geq \varepsilon_0$ in M for all α .

Proof of the lemma: Let K>0 be such that $K+h_{\alpha}\geq 1$ in M for all α . Define $\tilde{h}_{\alpha}=K+h_{\alpha}$ and $\tilde{h}=K+h$. Let $\delta>0$ and v_{α}^{δ} , v^{δ} , and r_{α} be given by

$$\begin{split} & \Delta_{g} v_{\alpha}^{\delta} + \tilde{h}_{\alpha} v_{\alpha}^{\delta} = a_{\alpha} - \delta f_{\alpha}^{-} \;, \\ & \Delta_{g} v^{\delta} + \tilde{h} v^{\delta} = a - \delta f^{-} \;, \\ & \Delta_{g} r_{\alpha} + \tilde{h}_{\alpha} r_{\alpha} = k_{\alpha} \;. \end{split}$$

There holds that $v_{\alpha}^{\delta} \to v^{\delta}$ in $C^{0}(M)$ as $\alpha \to +\infty$ and that $v^{\delta} \to v^{0}$ in $C^{0}(M)$ as $\delta \to 0$. By the maximum principle, $v^{0} > 0$ in M. It follows that there exists $\delta > 0$ sufficiently small, and $\varepsilon_{0} > 0$, such that $v_{\alpha}^{\delta} \geq \varepsilon_{0}$ in M for all $\alpha \gg 1$. Fix such a $\delta > 0$. Let t > 0

and define

$$w_{\alpha}=tv_{\alpha}^{\delta}+r_{\alpha}$$
.

We have that $r_{\alpha} \to 0$ in $C^0(M)$ as $\alpha \to +\infty$. There exists $t_0 > 0$ such that

$$\Delta_{g} w_{\alpha} + \tilde{h}_{\alpha} w_{\alpha} = t a_{\alpha} - t \delta f_{\alpha}^{-} + k_{\alpha}$$

$$\leq -f_{\alpha}^{-} w_{\alpha}^{2^{*}-1} + \frac{a_{\alpha}}{w_{\alpha}^{2^{*}+1}} + k_{\alpha}$$

for all $0 < t < t_0$ and all $\alpha \gg 1$. As a consequence, since $a_{\alpha} \geq 0$ in M,

$$\Delta_{g} (u_{\alpha} - w_{\alpha}) + \tilde{h}_{\alpha} (u_{\alpha} - w_{\alpha})$$

$$\geq f_{\alpha} u_{\alpha}^{2^{*}-1} + f_{\alpha}^{-} w_{\alpha}^{2^{*}-1} + \frac{a_{\alpha}}{u_{\alpha}^{2^{*}+1}} - \frac{a_{\alpha}}{w_{\alpha}^{2^{*}+1}} \geq 0$$

for all $\alpha\gg 1$, at any point such that $u_{\alpha}-w_{\alpha}\leq 0$. The maximum principle then gives that $w_{\alpha}\leq u_{\alpha}$ in M for all $\alpha\gg 1$. Since $w_{\alpha}\geq \varepsilon_{0}$ in M for $\alpha\gg 1$, this ends the proof of the lemma.