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Given Ψ scalar field, and V (Ψ) a potential, Einstein-scalar field
equations are written as:

Gij = ∇iΨ∇jΨ−
1

2
(∇αΨ∇αΨ) γij − V (Ψ)γij ,

where γ is the spacetime metric, and G = Rcγ − 1
2 Sγγ is the

Einstein curvature tensor. In the massive Klein-Gordon field theory,

V (Ψ) =
1

2
m2Ψ2 .



The constraint equations, using the conformal method, are

4(n−1)
n−2 ∆g u + h(g , ψ)u = f (ψ, τ)u2?−1 + a(σ,W ,π)

u2?+1 , (1)

divg (DW ) = n−1
n u2?∇τ − π∇ψ , (2)

where ∆g = −divg∇, 2? = 2n/(n − 2),

h = Sg − |∇ψ|2 , a = |σ +DW |2 + π2 , f = 4V (ψ)− n − 1

n
τ2

and Sg is the scalar curvature of g . Here, ψ, π and τ are functions
connected to the physics setting (τ mean curvature of spacelike
hypersurface), σ TT -tensor, W vector field, and D the conformal
Killing operator given by

(DW )ij = (∇iW )j + (∇jW )i −
2

n
(divg W )gij .

The system (1)− (2) is decoupled in the constant mean curvature
setting, namely when τ = C te .



The free data are (g , σ, τ, ψ, π). The determined data are u and
W . They satisfy

4(n−1)
n−2 ∆g u + h(g , ψ)u = f (ψ, τ)u2?−1 + a(σ,W ,π)

u2?+1 , (1)

divg (DW ) = n−1
n u2?∇τ − π∇ψ . (2)

More details available in the survey paper by Robert Bartnik and
Jim Isenberg: The constraint equations, arXiv:gr-qc/0405092v1,
2004.



(M, g) compact, ∂M = ∅, n ≥ 3. Let h, a, and f be arbitrary
smooth functions in M. Assume a > 0. Consider

∆g u + hu = fu2?−1 +
a

u2?+1
, (EL)

where ∆g = −divg∇, and 2? = 2n
n−2 .

Example: (Sub and supersolution method, Choquet-Bruhat,
Isenberg, Pollack, 2006). Assume ∆g + h is coercive and f ≤ 0.
Let v > 0 and u0 > 0 be such that

∆g u0 + hu0 = v .

For t > 0, let ut = tu0. We have:

(i) ut is a subsolution of (EL) when t � 1, and

(ii) ut is a supersolution of (EL) when t � 1.

Since ut ≤ ut′ when t ≤ t ′, the sub and supersolution method
provides a solution “u ∈ [ut , ut′ ]” for (EL).



Question: What can we say when ∆g + h is coercive and either f
changes sign or f is everywhere positive, i.e. when maxM f > 0 ?

Assume ∆g + h is coercive. Define

‖u‖2
h =

∫
M

(
|∇u|2 + hu2

)
dvg ,

u ∈ H1. Let S(h) to be the smallest constant such that(∫
M
|u|2?dvg

)2/2?

≤ S(h)2/2?
∫

M

(
|∇u|2 + hu2

)
dvg

for all u ∈ H1.



Theorem 1: (H.-Pacard-Pollack, Comm. Math. Phys., 2008) Let
(M, g) be a smooth compact Riemannian manifold, n ≥ 3. Let h,
a, and f be smooth functions in M. Assume that ∆g + h is
coercive, that a > 0 in M, and that maxM f > 0. There exists
C = C (n), C > 0 depending only on n, such that if

‖ϕ‖2?

h

∫
M

a

ϕ2?
dvg <

C (n)

(S(h) maxM |f |)n−1

and
∫
M f ϕ2?dvg > 0 for some smooth positive function ϕ > 0 in

M, then the Einstein-scalar field Lichnerowicz equation (EL)
possesses a smooth positive solution.

Example: if
∫
M fdvg > 0 then take ϕ ≡ 1 and the condition reads

as ∫
M

advg <
C (n, g , h)

(maxM |f |)n−1
,

where C (n, g , h) > 0 depends on n, g and h.



A perturbation of (EL) is a sequence (ELα)α of equations, α ∈ N,
which are written as

∆g u + hαu = fαu2?−1 +
aα

u2?+1
+ kα (ELα)

for all α. Here we require that

hα → h , aα → a , kα → 0

in C 0 as α→ +∞, and that fα → f in C 1,η as α→ +∞, where
η > 1

2 .

If (EL) satisfies the assumption of Theorem 1, any perturbation of
(EL) also satisfies the assumptions of Theorem 1.

A sequence (uα)α is a sequence of solutions of (ELα)α if for any α,
uα solves (ELα).



Definition: (Elliptic stability) The Einstein-scalar field
Lichnerowicz equation (EL) is said to be:

(i) stable if for any perturbation (ELα)α of (EL), and any
H1-bounded sequence (uα)α of smooth positive solutions of
(ELα)α, there exists a smooth positive solution u of (EL) such that,
up to a subsequence, uα → u in C 1,θ(M) for all θ ∈ (0, 1), and

(ii) bounded and stable if for any perturbation (ELα)α of (EL), and
any sequence (uα)α of smooth positive solutions of (ELα)α, the
sequence (uα)α is bounded in H1 and there exists a smooth
positive solution u of (EL) such that, up to a subsequence, uα → u
in C 1,θ(M) for all θ ∈ (0, 1).



Remark 1: Assuming stronger convergences for the hα’s, fα’s,
etc., then we get stronger convergences for the uα’s. E.g., if
hα → h, fα → f , aα → a and kα → 0 in Cp,θ, p ∈ N and
θ ∈ (0, 1), then uα → u in Cp+2,θ′ , θ′ < θ.

Remark 2: Stability means that if you slightly perturb h, a, and f ,
and even if you add to the equation a small “background noise”
represented by k, then, in doing so, you do note create solutions
which stand far from a solution of the original equation.

Remark 3: Say (EL) is compact if any H1-bounded sequence
(uα)α of solutions of (EL) does possess a subsequence which
converges in C 2. Say (EL) is bounded and compact if any
sequence (uα)α of solutions of (EL) does possess a subsequence
which converges in C 2. Stability implies compactness. Bounded
stability implies bounded compactness.



Let D = C∞(M)4 and ‖ · ‖D be given by

‖D‖D =
3∑

i=1

‖fi‖C0,1 + ‖f4‖C1,1

for all D = (f1, f2, f3, f4) ∈ D. For D = (h, a, k , f ) in D consider

∆g u + hu = fu2?−1 +
a

u2?+1
+ k . (EL′)

If D = (h, a, 0, f ), then (EL′) = (EL). Let Λ > 0, D = (h, a, k, f )
in D, and define

SD,Λ =
{

u solution of (EL′) s.t. ‖u‖H1 ≤ Λ
}
,

and SD =
{

u solution of (EL′)
}
.

When D = (h, a, 0, f ) we recover solutions of (EL).



For X ,Y ⊂ C 2 define

d ↪→C2 (X ; Y ) = sup
u∈X

inf
v∈Y
‖v − u‖C2 .

By convention, d ↪→C2 (X ; ∅) = +∞ if X 6= ∅, and d ↪→C2 (∅; Y ) = 0 for
all Y , including Y = ∅.

Let D = (h, a, 0, f ) be given.

Stability ⇔ (EL) is compact and
∀ε > 0, ∀Λ > 0, ∃δ > 0 s.t. ∀D ′ = (h′, a′, k ′, f ′) ∈ D,
‖D ′ − D‖D < δ ⇒ d ↪→C2 (SD′,Λ;SD,Λ) < ε .

Bounded stability ⇔ (EL) is bounded compact and
∀ε > 0, ∃δ > 0 s.t. ∀D ′ = (h′, a′, k ′, f ′) ∈ D,
‖D ′ − D‖D < δ ⇒ d ↪→C2 (SD′ ;SD) < ε .



Theorem 2: (Druet-H., Math. Z., 2008) Let (M, g) be a smooth
compact Riemannian manifold of dimension n ≥ 3, and
h, a, f ∈ C∞(M) be smooth functions in M with a > 0. Assume
n = 3, 4, 5. Then the Einstein-scalar field Lichnerowicz equation

∆g u + hu = fu2?−1 +
a

u2?+1
(EL)

is stable. The equation is even bounded and stable assuming in
addition that f > 0 in M. On the contrary, (EL) is not anymore
stable a priori when n ≥ 6.



I. Further directions and comments - 1

Lemma 1: (H.-Pacard-Pollack, Comm. Math. Phys., 2008)
Assume a ≥ 0, f > 0, and

nn

(n − 1)n−1

(∫
M

a
n+2
4n f

3n−2
4n dvg

) 4n
n+2

>

(∫
M

(h+)
n+2

4 dvg

f
n−2

4

) 4n
n+2

.

Then the Einstein-scalar field Lichnerowicz equation (EL) does not
possess solutions.

In particular, for any h, and any f > 0, there exist a positive
constante C = C (n, g , h, f ) such that if∫

M
a

n+2
4n dvg ≥ C ,

then (EL) does not possess solutions.



Proof: Integrating (EL),∫
M

fu2?−1dvg +

∫
M

advg

u2?+1
=

∫
M

hudvg .

By Hölder’s inequalities,

∫
M

hudvg ≤

(∫
M

(h+)
n+2

4 dvg

f
n−2

4

) 4
n+2 (∫

M
fu2?−1dvg

) n−2
n+2

, and

∫
M

a
n+2
4n f

3n−2
4n dvg ≤

(∫
M

fu2?−1dvg

) 3n−2
4n
(∫

M

advg

u2?+1

) n+2
4n

.



X +

(∫
M

a
n+2
4n f

3n−2
4n dvg

) 4n
n+2

X 1−n ≤

(∫
M

(h+)
n+2

4 dvg

f
n−2

4

) 4
n+2

,

where

X =

(∫
M

fu2?−1dvg

) 4
n+2

.

This implies

nn

(n − 1)n−1

(∫
M

a
n+2
4n f

3n−2
4n dvg

) 4n
n+2

≤

(∫
M

(h+)
n+2

4 dvg

f
n−2

4

) 4n
n+2

. ♦



II. Further directions and comments - 2

Fix h, a and f . Assume ∆g + h is coercive, and a, f > 0. Let
t > 0 and consider

∆g u + hu = fu2?−1 +
ta

u2?+1
. (ELt)

According to Theorem 1 and the Lemma:

(i) (Theorem 1) for t � 1, (ELt) possesses a solution,

(ii) (Lemma 1) for t � 1, (ELt) does not possess any solution.

Assuming n = 3, 4, 5,

(iii) (Theorem 2) (ELt)t is bounded and stable for t ∈ [t0, t1],

where 0 < t0 < t1.



Let Λ > 0. Define

ΩΛ =

{
u ∈ C 2,θ s.t. ‖u‖C2,θ < Λ and min

M
u > Λ−1

}
.

Fix t0 � 1 such that (ELt0) possesses a solution. Fix t1 � 1 such
that (ELt1) does not possess any solution. Assume n = 3, 4, 5.
Define Ft : ΩΛ → C 2,θ by

Ftu = u − L−1
(

fu2?−1 +
ta

u2?+1

)
,

where L = ∆g + h, and t ∈ [t0, t1]. By (iii), there exists Λ0 > 0
such that F−1

t (0) ⊂ ΩΛ0 for all t ∈ [t0, t1]. Then, by (ii),

deg(Ft0 ,ΩΛ, 0) = 0

for all Λ� 1. In particular, assuming that the solutions of the
equations are nondegenerate, the solution in Theorem 1 needs to
come with another solution.



III. Proof of Theorem 1

We aim in proving:

Let (M, g) be a smooth compact Riemannian manifold, n ≥ 3. Let
h, a, and f be smooth functions in M. Assume that ∆g + h is
coercive, that a > 0 in M, and that maxM f > 0. There exists
C = C (n), C > 0 depending only on n, such that if

‖ϕ‖2?

h

∫
M

a

ϕ2?
dvg <

C (n)

(S(h) maxM |f |)n−1

and
∫
M f ϕ2?dvg > 0 for some smooth positive function ϕ > 0 in

M, then the Einstein-scalar field Lichnerowicz equation

∆g u + hu = fu2?−1 +
a

u2?+1
(EL)

possesses a smooth positive solution.

Method: approximated equations, mountain pass analysis.



Fix ε > 0. Define

I (1)(u) =
1

2

∫
M

(
|∇u|2 + hu2

)
dvg −

1

2?

∫
M

f (u+)2?dvg ,

and

I (2)
ε (u) =

1

2?

∫
M

advg

(ε+ (u+)2)2?/2
,

where u ∈ H1. Let
Iε = I (1) + I (2)

ε .

Let ϕ > 0 be as in Theorem 1. Assume ‖ϕ‖h = 1. The conditions
in the theorem read as∫

M

a

ϕ2?
dvg <

C (n)

(S(h) maxM |f |)n−1
(1)

and
∫
M f ϕ2?dvg > 0.



Let Φ,Ψ : R+ → R be the functions given by

Φ(t) =
1

2
t2 − maxM |f |

2?
S(h)t2? , and

Ψ(t) =
1

2
t2 +

maxM |f |
2?

S(h)t2? .

These functions satisfy

Φ (‖u‖h) ≤ I (1)(u) ≤ Ψ (‖u‖h) (2)

for all u ∈ H1. Let t1 > 0 be such that Φ is increasing up to t1

and decreasing after:

t1 =

(
S(h) max

M
|f |
)−(n−2)/4

.

Let t0 > 0 be given by

t0 =

√
1

2(n − 1)
t1 .



Then

Ψ(t0) ≤ 1

2
Φ(t1) (3)

and for C � 1 the condition in the theorem translates into

1

2?

∫
M

a

(t0ϕ)2?
dvg <

1

2
Φ(t1) . (4)

Let ρ = Φ(t1). Then, by (3) and (4),

Iε(t0ϕ) < ρ

and by
Φ (‖u‖h) ≤ I (1)(u) ≤ Ψ (‖u‖h) , (2)

we can write that
Iε(u) ≥ ρ

for all u s.t. ‖u‖h = t1.



We got that there exists ρ > 0 such that

Iε(t0ϕ) < ρ

and
Iε(u) ≥ ρ

for all u s.t. ‖u‖h = t1. Also t1 > t0. Since
∫
M f ϕ2?dvg > 0,

Iε(tϕ)→ −∞

as t → +∞.

⇒ We can apply the mountain pass lemma.



Let t2 � 1. Define
cε = inf

γ∈Γ
max
u∈γ

Iε(u)

where Γ is the set of continuous paths joining t0ϕ to t2ϕ. The
MPL provides a Palais-Smale sequence (uεk)k such that

Iε(uεk)→ cε and I ′ε(uεk)→ 0

as k → +∞. The sequence (uεk)k is bounded in H1. Up to a
subsequence, uεk ⇀ uε in H1. Then uε satisfies

∆g uε + huε = fu2?−1
ε +

auε

(ε+ u2
ε )

2?

2
+1

In particular, uε is positive and smooth.



We can prove that the cε’s are bounded independently of ε. In
particular the family (uε)ε is bounded in H1. Now we can pass to
the limit as ε→ 0 because uε will never approach zero. Take
xε ∈ M such that uε(xε) = minM uε. Then ∆g uε(xε) ≤ 0 and

|h(xε)|+ |f (xε)| uε(xε)
2?−2 ≥ a(xε)

(ε+ uε(xε)2)
2?

2
+1

.

This implies that there exists δ0 > 0 such that

min
M

uε ≥ δ0

for all ε. If uε ⇀ u in H1, then u ≥ δ0 and u solves (EL). ♦



IV. Proof of the stability part in Theorem 2

We aim in proving:

Let (M, g) be a smooth compact Riemannian manifold of
dimension n ≥ 3, and h, a, f ∈ C∞(M) be smooth functions in M
with a > 0. Assume n = 3, 4, 5. Then the Einstein-scalar field
Lichnerowicz equation

∆g u + hu = fu2?−1 +
a

u2?+1
(EL)

is stable, and even bounded and stable if f > 0 in M.

Method: blow-up analysis, sharp pointwise estimates.



Let (ELα)α be a perturbation of (EL). Let also (uα)α be a
sequence of solutions of (ELα). Consider

(H1A) f > 0 in M,

(H1B) (uα)α is bounded in H1,

(H2) ∃ε0 > 0 s.t. uα ≥ ε0 in M for all α.

We claim that:

Stability Theorem: (Druet-H., Math. Z., 2008) Let n ≤ 5. Let
(ELα)α be a perturbation of (EL) and (uα)α a sequence of
solutions of (ELα)α. Assume (H1A) or (H1B), and we also assume
(H2). Then the sequence (uα)α is uniformly bounded in C 1,θ,
θ ∈ (0, 1).

By (H2),
|∆g uα| ≤ Cu2?−1

α ,

where C > 0 does not depend on α.



Proof of stability theorem: By contradiction. We assume that
‖uα‖∞ → +∞ as α→ +∞. We also assume (H1A) or (H1B),
and (H2). Let (xα)α and (ρα)α be such that

(i) xα is a critical point of uα for all α,

(ii) ρ
n−2

2
α supBxα (ρα) uα → +∞ as α→ +∞, and

(iii) dg (xα, x)
n−2

2 uα(x) ≤ C for all x ∈ Bxα(ρα) and all α.

Then :

Main Estimate: Assume (i) – (iii). Then we have that ρα → 0,

ρ
n−2

2
α uα(xα)→ +∞, and

uα(xα)ρn−2
α uα

(
expxα(ραx)

)
→ λ

|x |n−2
+ H(x)

in C 2
loc (B0(1)\{0}) as α→ +∞, where λ > 0 and H is a

harmonic function in B0(1) which satisfies that H(0) = 0.



There exist C > 0, a sequence (Nα)α of integers, and for any α,
critical points x1,α, . . . , xNα,α of uα such that(

min
i=1,...,Nα

dg (xi ,α, x)

) n−2
2

uα(x) ≤ C (1)

for all x ∈ M and all α. We have Nα ≥ 2. Define

dα = min
1≤i<j≤Nα

dg (xi ,α, xj ,α)

and let the xi ,α’s be such that dα = dg (x1,α, x2,α). We have
dα → 0 as α→ +∞. Moreover,

d
n−2

2
α uα(x1,α)→ +∞ (2)

as α→ +∞.



Define ũα by

ũα(x) = d
n−2

2
α uα

(
expx1,α

(dαx)
)
,

where x ∈ Rn. Let ṽα = ũα(0)ũα. Then

|∆g̃α ṽα| ≤
C

ũα(0)2?−2
ṽ 2?−1
α , (3)

where g̃α → δ as α→ +∞. Because of

d
n−2

2
α uα(x1,α)→ +∞ , (2)

ũα(0)→ +∞ as α→ +∞. Independently, by elliptic theory, for
any R > 0,

ṽα → G in C 1
loc (B0(R)\{x̃i}i=1,...,p)

as α→ +∞, where, because of (3), G is nonnegative and
harmonic in B0(R)\{x̃i}i=1,...,p.



Then,

G (x) =

p∑
i=1

λi

|x − x̃i |n−2
+ H(x) ,

where λi > 0 and H is harmonic without singularities. In
particular, in a neighbourhood of 0,

G (x) =
λ1

|x |n−2
+ H̃(x) .

By (
min

i=1,...,Nα
dg (xi ,α, x)

) n−2
2

uα(x) ≤ C (1)

d
n−2

2
α uα(x1,α)→ +∞ (2)

we can apply the main estimate with xα = x1,α and ρα = dα
10 . In

particular, H̃(0) = 0.



However,

G (x) =
λ1

|x |n−2
+

λ2

|x − x̃2|n−2
+ Ĥ(x)

≥ 0

and

H̃(x) =
λ2

|x − x̃2|n−2
+ Ĥ(x) .

By the maximum principle,

Ĥ(0) ≥ min
∂B0(R)

Ĥ

and we get that

H̃(0) ≥ λ2

|x̃2|n−2
− λ1

Rn−2
− λ2

(R − |x̃2|)n−2
.

By construction, |x̃2| = 1. Choosing R � 1 sufficiently large,
H̃(0) > 0. A contradiction. ♦



It remains to prove the stability part in theorem 2. We introduced

(H1A) f > 0 in M,

(H1B) (uα)α is bounded in H1,

(H2) ∃ε0 > 0 s.t. uα ≥ ε0 in M for all α,

and we proved that

(H1A) or (H1B), and (H2) ⇒ C 1,θ − convergences

for the uα’s solutions of perturbations of (EL). Let (ELα)α be any
perturbation of (EL), and (uα)α be any sequence of solution of
(ELα)α. It suffices to prove (H2). Let xα be such that
uα(xα) = min uα. Then ∆g uα(xα) ≤ 0 and we get that

hα(xα) ≥ 1

uα(xα)

(
aα(xα)

uα(xα)2?+1
+ kα(xα)

)
+ fα(xα)uα(xα)2?−2 .

In particular, uα ≥ ε0 > 0 and (H2) is satisfied. We can apply the
stability theorem. This proves the stability part of Theorem 2.



V. Proof of the instability part in Theorem 2

We aim in proving:

When n ≥ 6 the Einstein-scalar field Lichnerowicz equation

∆g u + hu = fu2?−1 +
a

u2?+1
(EL)

is not a priori stable.

Method: explicit constructions of examples.



A first construction.

Lemma 2: (Druet-H., Math. Z., 2008) Let (Sn, g0) be the unit
sphere, n ≥ 7. Let x0 ∈ Sn. Let a and u0 be smooth positive
functions such that

∆g0u0 +
n(n − 2)

4
u0 =

n(n − 2)

4
u2?−1

0 +
a

u2?+1
0

.

There exist sequences (hα)α and (Φα)α such that hα → n(n−2)
4 in

C 0(Sn), maxM Φα → +∞ and Φα → 0 in C 2
loc(Sn\{x0}) as

α→ +∞. In addition

∆g0uα + hαuα =
n(n − 2)

4
u2?−1
α +

a

u2?+1
α

for all α, where uα = u0 + Φα.



Proof of Lemma 2: Let ϕα be given by

ϕα(x) =

( √
β2
α − 1

βα − cos dg0(x0, x)

) n−2
2

,

where βα > 1 for all α and βα → 1 as α→ +∞. The ϕα’s satisfy

∆g0ϕα +
n(n − 2)

4
ϕα =

n(n − 2)

4
ϕ2?−1
α .

Let
uα = u0 + ϕα + ψα ,

where ψα is such that

∆g0u0 + ∆g0ϕα + ∆g0ψα

=
n(n − 2)

4
(u0 + ϕα)2?−1 −

(
n(n − 2)

4
+ εα

)
(u0 + ϕα)

+
a

(u0 + ϕα)2?+1
.

We have εα → 0 as α→ +∞.



For any sequence (xα)α of points in Sn,

|ψα(xα)| = o


 (βα − 1)

(n−2)
2(n−4)

(βα − 1) + dg0(x0, xα)2

 n−4
2

+ o(1) . (1)

Thanks to (1),

ψα
uα
→ 0 and u2?−3

α ψα → 0 (2)

in C 0(Sn) as α→ +∞. For instance, either ψα(xα)→ 0 and
ψα(xα)/uα(xα)→ 0, or ψα(xα) 6→ 0. In that case, because of (1),
dg0(x0, xα)→ 0. Then, ψα(xα)/uα(xα)→ 0 since

ψα(xα)

ϕα(xα)
≤ C te

(
(βα − 1) + dg0(x0, xα)2

)
.



Let hα be such that

∆g0uα + hαuα =
n(n − 2)

4
u2?−1
α +

a

u2?+1
α

for all α. Write ∆g0uα = ∆g0u0 + ∆g0ϕα + ∆g0ψα. By the
equation satisfied by ψα,(

hα −
n(n − 2)

4

)
uα = O

(
u2?−2
α ψα

)
+ O (ψα) + εαuα .

Divide by uα, and conclude thanks to

ψα
uα
→ 0 and u2?−3

α ψα → 0 (2)

that hα → n(n−2)
4 in C 0 as α→ +∞. This proves Lemma 2. ♦



Say that (M, g) has a conformally flat pole at x0 if g is
conformally flat around x0. Thanks to Lemma 2 we get:

Lemma 3: (Druet-H., Math. Z., 2008) Let (M, g) be a smooth
compact Riemannian manifold with a conformally flat pole, n ≥ 7.
There exists δ > 0 such that the Einstein-scalar Lichnerowicz
equation

∆g u +
n − 2

4(n − 1)
Sg u = u2?−1 +

a

u2?+1

is not stable on (M, g) and possesses smooth positive solutions for
all smooth functions a > 0 such that ‖a‖1 < δ.



VI. The case a ≥ 0. Unpublished result.

When a > 0 in M: let u > 0 be a solution of (EL). Let x0 be such
that u(x0) = minM u. Then ∆g u(x0) ≤ 0 and

|h(x0)|u(x0) + |f (x0)|u(x0)2?−1 ≥ a(x0)

u(x0)2?+1

⇒ there exists ε0 = ε0(h, f , a), ε0 > 0, such that u ≥ ε0 in M.

Question:Assume ∆g + h is coercive, a ≥ 0 and maxM f > 0.
What can we say when Zero(a) 6= ∅ ?

In physics

a = |σ + DW |2 + π2 ,

where σ and π are free data, and W is the determined data given
by the second equation in the system.



Recall (EL) is compact if any H1-bounded sequence (uα)α of
solutions of (EL) does possess a subsequence which converges in
C 2. Recall (EL) is bounded and compact if any sequence (uα)α of
solutions of (EL) does possess a subsequence which converges in
C 2.

Theorem 3: (Druet, Esposito, H., Pacard, Pollack, Collected
works - Unpublished, 2009) Assume ∆g + h is coercive, a ≥ 0,
a 6≡ 0, and maxM f > 0. Theorem 1 remains true without any
other assumptions than those of Theorem 1. Assuming that
n = 3, 4, 5, the equation is compact and even bounded and
compact when f > 0.

Existence follows from a combination of Theorem 1 and the sub
and supersolution method. Compactness follows from the stability
theorem in the proof of Theorem 2 together with an argument by
Pierpaolo Esposito.



Proof of the existence part in Theorem 3: Assume the
“assumptions” of Theorem 1 are satisfied: there exists ϕ > 0 such
that

‖ϕ‖2?

h

∫
M

a

ϕ2?
dvg <

C (n)

(S(h) maxM |f |)n−1
(1)

and
∫
M f ϕ2?dvg > 0. Changing a into a + ε0 for 0 < ε0 � 1, (1)

is still satisfied, and since a + ε0 > 0 we can apply Theorem 1. In
particular,

(i) “a→ a + ε0”, 0 < ε0 � 1, and Theorem 1
⇒ ∃u1 a supersolution of (EL).

Now let δ > 0 and let u0 solve

∆g u0 + hu0 = a− δf −

For δ > 0 sufficiently small, u0 is close to the solution with δ = 0,
and since this solution is positive by the maximum principle, we get
that u0 > 0 for 0 < δ � 1. Fix such a δ > 0.



Given ε > 0, let uε = εu0. Then

∆g uε + huε = εa− δεf − ≤ fu2?−1
ε +

a

u2?+1
ε

provided 0 < ε� 1. In particular,

(ii) uε = εu0, 0 < ε� 1, is a subsolution of (EL).

Noting that uε ≤ u1 for ε > 0 sufficiently small, we can apply the
sub and supersolution method and get a solution u to (EL) such
that uε ≤ u ≤ u1. ♦

The compactness part in Theorem 3 follows from the stability
theorem in the proof of Theorem 2 together with the following
result by Esposito which establishes the (H2) property of Druet
and Hebey under general conditions.

We do not need in what follows the C 1,η-convergence of the fα’s.
A C 0-convergence (and even less) is enough.



Lemma 4: (Esposito, Unpublished, 2009) Let n ≤ 5. Let (ELα)α
be a perturbation of (EL) and (uα)α a sequence of solutions of
(ELα)α. Assume aα ≥ 0 in M for all α, and a 6≡ 0. The (H2)
property holds true: ∃ε0 > 0 such that uα ≥ ε0 in M for all α.

Proof of the lemma: Let K > 0 be such that K + hα ≥ 1 in M for
all α. Define h̃α = K + hα and h̃ = K + h. Let δ > 0 and v δα, v δ,
and rα be given by

∆g v δα + h̃αv δα = aα − δf −α ,

∆g v δ + h̃v δ = a− δf − ,

∆g rα + h̃αrα = kα .

There holds that v δα → v δ in C 0(M) as α→ +∞ and that
v δ → v 0 in C 0(M) as δ → 0. By the maximum principle, v 0 > 0 in
M. It follows that there exists δ > 0 sufficiently small, and ε0 > 0,
such that v δα ≥ ε0 in M for all α� 1. Fix such a δ > 0. Let t > 0



and define
wα = tv δα + rα .

We have that rα → 0 in C 0(M) as α→ +∞. There exists t0 > 0
such that

∆g wα + h̃αwα = taα − tδf −α + kα

≤ −f −α w 2?−1
α +

aα

w 2?+1
α

+ kα

for all 0 < t < t0 and all α� 1. As a consequence, since aα ≥ 0
in M,

∆g (uα − wα) + h̃α (uα − wα)

≥ fαu2?−1
α + f −α w 2?−1

α +
aα

u2?+1
α

− aα

w 2?+1
α

≥ 0

for all α� 1, at any point such that uα − wα ≤ 0. The maximum
principle then gives that wα ≤ uα in M for all α� 1. Since
wα ≥ ε0 in M for α� 1, this ends the proof of the lemma. ♦


