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I. The full KGMP-system.

The physics purpose of Klein-Gordon-Maxwell-Proca systems is
that they provide a model for the interaction between a charged
relativistic matter scalar field and the electromagnetic field that it
generates. In other words, the electromagnetic field is both
generated by and drives the particle field.

Here : massive version of the more classical Klein-Gordon-Maxwell
equations. The vector field representing the electromagnetic field
has a mass.
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Nonlinear Klein-Gordon total functional, minimum coupling rule
∂t → ∂t + iqϕ and ∇ → ∇− iqA,

where (ϕ,A) gauge potential representing the electromagnetic
field, governed by the Maxwell-Proca Lagrangian. Consider the two
Lagrangian densities

LNKG (ψ,ϕ,A)

=
1

2

∣∣∣∣( ∂∂t + iqϕ)ψ

∣∣∣∣2 − 1

2
|(∇− iqA)ψ|2 − m2

0

2
|ψ|2 +

1

p
|ψ|p

and

LMP(ϕ,A) =
1

2

∣∣∣∣∂A∂t +∇ϕ
∣∣∣∣2 − 1

2
|∇ × A|2 +

m2
1

2
|ϕ|2 − m2

1

2
|A|2 .

Here ∇× = ?d , ? Hodge dual, d differentiation. Massive version
of KGM theory. Here ψ matter field, m0 its mass, q its charge,
(A, ϕ) gauge potentials representing the electromagnetic vector
field, m1 is the Proca mass.
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Consider the total action functional

S(ψ,ϕ,A) =

∫ ∫
(LNKG + LMP) dvgdt .

Write ψ in polar form as ψ(x , t) = u(x , t)e iS(x ,t) for u ≥ 0 and
u,S : M × R→ R. Then the total action rewrites as

S(u,S , ϕ,A) =
1

2

∫ ∫ ((
∂u

∂t

)2

− |∇u|2 −m2
0u

2

)
dvgdt

+
1

p

∫ ∫
updvgdt

+
1

2

∫ ∫ ((
∂S

∂t
+ qϕ

)2

− |∇S − qA|2
)
u2dvgdt

+
1

2

∫ ∫ (∣∣∣∣∂A∂t +∇ϕ
∣∣∣∣2 − |∇ × A|2 +

m2
1

2
|ϕ|2 − m2

1

2
|A|2

)
dvgdt .
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We can take the variation of S with respect to u, S , ϕ, and A. For
instance, if we let ωg be the volume form of (M, g), then

1

2

(
d

dA

∫
|∇ × A|2

)
.(B) =

∫
(?dA, ?dB)ωg (quadratic +∇× = ?d)

= (−1)n−1

∫
(?dA, (?d?) ? B)ωg (?? = (−1)n−1 in Λ1)

=

∫
(?dA, δ ? B)ωg (δ = (−1)n−1 ? d ? in Λn−1)

=

∫
(d ? dA, ?B)ωg (Stokes formula)

=

∫
(?δdA, ?B)ωg (d? = ?δ in Λ2)

=

∫
(?δdA) ∧ (? ? B) (since α ∧ (?β) = (α, β)ωg in Λp)

= (−1)n−1

∫
(?δdA) ∧ B (?? = (−1)n−1 in Λ1)

=

∫
(δdA,B)ωg (α ∧ β = (−1)n−1β ∧ α for α ∈ Λn−1, β ∈ Λ1)

E.Hebey - 2018



In particular,

1

2

(
d

dA

∫
|∇ × A|2

)
.(B) =

∫ (
∆gA,B

)
for all B, where ∆g = δd , δ codifferential. Taking the variation of

S(ψ,ϕ,A) =

∫ ∫
(LNKG + LMP) dvgdt .

with respect to u, S , ϕ, and A, we then get four equations which
are written as
∂2u
∂t2 + ∆gu + m2

0u = up−1 +
((

∂S
∂t + qϕ

)2 − |∇S − qA|2
)
u

∂
∂t

((
∂S
∂t + qϕ

)
u2
)
−∇.

(
(∇S − qA) u2

)
= 0

−∇.
(
∂A
∂t +∇ϕ

)
+ m2

1ϕ+ q
(
∂S
∂t + qϕ

)
u2 = 0 (KGMP)

∆gA + ∂
∂t

(
∂A
∂t +∇ϕ

)
+ m2

1A = q (∇S − qA) u2 .

This is the nonlinear Klein-Gordon-Maxwell-Proca system. As
m1 → 0 (or letting m1 = 0), the nonlinear KGMP system reduces
to the nonlinear Klein-Gordon-Maxwell system.
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This kind of system, without the Proca contribution (take m1 = 0),
without external force (cancel the up−1-term), but with the full
time dependency, has been investigated by several people (the list
is certainly far from being exhaustive) like Cuccagna, Linblad,
Keel, Klainerman, Machedon, Rodnianski, Roy, Selberg, Sterbenz,
Tataru, Tesfahun and Tao (and they prove local well-posedeness,
global well-posedeness n = 3, global well-posedeness for small
inital data n ≥ 4, global well-posedeness below the energy norm,
critical dimension n = 4, asymptotic behavior).

***
∂2u
∂t2 + ∆gu + m2

0u = up−1 +
((

∂S
∂t + qϕ

)2 − |∇S − qA|2
)
u

∂
∂t

((
∂S
∂t + qϕ

)
u2
)
−∇.

(
(∇S − qA) u2

)
= 0

−∇.
(
∂A
∂t +∇ϕ

)
+ m2

1ϕ+ q
(
∂S
∂t + qϕ

)
u2 = 0 (KGMP)

∆gA + ∂
∂t

(
∂A
∂t +∇ϕ

)
+ m2

1A = q (∇S − qA) u2 .
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II. Why do we refer to Maxwell-Proca ?

Somehow we go backward with respect to what dispersive
mathematicians do. Assume n = 3. Let the electric field E , the
magnetic induction H, the charge density ρ, and the current
density J be given by

E = −
(
∂A

∂t
+∇ϕ

)
,

H = ∇× A ,

ρ = −
(
∂S

∂t
+ qϕ

)
qu2 ,

J = (∇S − qA) qu2 .

The two last equations in (KGMP) give rise to the first pair of the
Maxwell-Proca equations with respect to a matter distribution
whose charge and current density are respectively ρ and J.

We get for free the second pair of the Maxwell-Proca equations.
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In other words the two last equations in the (KGMP)-system can
be rewritten as

∇.E = ρ−m2
1ϕ ,

∇× H − ∂E

∂t
= J −m2

1A ,

∇× E +
∂H

∂t
= 0 , ∇.H = 0 .

The first equation in the (KGMP)-system is the nonlinear
Klein-Gordon matter equation. Namely

∂2u

∂t2
+ ∆gu + m2

0u = up−1 +
ρ2 − |J|2

q2u3
.

The second equation in the (KGMP)-system is the charge
continuity equation ∂ρ

∂t +∇.J = 0, which is equivalent to the
Lorentz condition

∇.A +
∂ϕ

∂t
= 0 .

The (KGMP)-system is equivalent to this system of 6 equations.
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The equivalence between the charge continuity equation and the
Lorentz condition involves only basic computations and uses in a
fondamental way the condition m1 6= 0. The Maxwell-Proca
equations are written as

∇.E = ρ−m2
1ϕ , ∇× H − ∂E

∂t
= J −m2

1A ,

∇× E +
∂H

∂t
= 0 , ∇.H = 0 .

The charge continuity equation states that ∂ρ
∂t +∇.J = 0. Taking

the derivation of the first Maxwell equation with respect to time,
and the divergence of the second equation,

∂ρ

∂t
+∇.J = ∇.∂E

∂t
+ m2

1

∂ϕ

∂t
+∇.(∇× H)−∇.∂E

∂t
+ m2

1∇.A

= m2
1

(
∇.A +

∂ϕ

∂t

)
since ∇.(∇× H) = δ(?d)H, δ = ?−1d? in Λ1, ?? = 1 in Λ2, and
d2 = 0 so that ∇.(∇× H) = 0. The condition m1 6= 0 breaks the
gauge invariance and enforces the Lorentz gauge.
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III. The physics behind the Proca contribution

The Maxwell equations in Proca form are

∇.E = ρ−m2
1ϕ ,∇× H − ∂E

∂t
= J −m2

1A ,

∇× E +
∂H

∂t
= 0 , ∇.H = 0 .

They reduce to the Maxwell equations as m1 → 0. Proca (1936)
was using the Lorentz formalism. Under this form, referred to as
the “modern format”, the equations appeared for the first time in
a paper by Schrödinger : “The earth’s and the sun’s permanent
magnetic fields in the unitary field theory” (1943). These equations
have been discussed by several physicists including, in addition to
Proca and Schrödinger, people like De Broglie, Pauli, Yukawa, and
Stueckleberg. . . The whole point in these theories is that m1 is
nothing but than the mass of the photon : we are talking about a
theory where photons have a mass (“the photon is the quantum of
the electromagnetic field including electromagnetic radiation such
as light, and the force carrier for the electromagnetic force”).
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Louis de Broglie, 1950
Sur une forme nouvelle de la théorie du champ soustractif

A partir de 1934, l’auteur du présent article a développé une forme
nouvelle de la théorie quantique du champ électromagnétique qu’il
a appelé “la Mécanique ondulatoire du photon” et qui présentait à
ses yeux l’avantage de faire plus clairement rentrer la théorie
quantique des champs dans le cadre général de la Mécanique
ondulatoire des particules à spin. Dans cette théorie, qui a été
exposée dans plusieurs Ouvrages, il a été attribué au photon une
masse propre extrêmement petite, mais non nulle, et nous avons
été ainsi conduit dès 1934 à prendre comme équations de la
particule de spin 1 des équations qui, mises sous forme vectorielle,
sont des équations du type classique de Maxwell complétées par de
petits termes contenant la masse propre. Des équations de même
forme ont été ensuite proposées, en 1936, par M. Alexandre Proca,
et on leur donne aujourd’hui dans la théorie du méson le nom
d’équations de Proca. En somme ces équations sont les équations
générales des particules de spin 1.
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What about nowdays ? Well, people are still pretty much
enthusiastic. . .

Eric Adelberger, Gia Dvali, Andrei Gruzinov
Photon-mass bound destroyed by vortices
Phys. Rev. Lett., 2007.

The possibility of a nonzero photon mass remains one of the most
important issues in physics , as it would shed light on fundamental
questions such as charge conservation, charge quantization, the
possibility of charged black holes and magnetic monopoles, etc.
The most stringent upper bounds on the photon mass listed by the
particule Data Group, m < 3× 10−27 eV and m < 2× 10−16 eV,
are based on the assumption that a massive photon cause
large-scale magnetic fields to be accompanied by an energy density

m2
AÃµÃ

µ

associated with the Proca field Ãµ that describes the massive
photon.
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Alexandru Proca Louis de Broglie
1897-1955 1892-1987

Some possible references :

[1] G.T.Gillies, J.Luo, L.C.Tu, The mass of the photon, Report on
Progress in Physics, 68, 2005, 77–130.

[2] A.S.Goldhaber, M.M.Nieto, Photon and Graviton mass limits,
Reviews of Modern Physics, 82, 2010, 939–979.

[3] H.Ruegg M. Ruiz-Altaba, The Stueckleberg field, International
Journal of Modern Physics A, 19, 2004, 3265–3348.
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IV. A drastic elliptic reduction of the equations

Return to
∂2u
∂t2 + ∆gu + m2

0u = up−1 +
((

∂S
∂t + qϕ

)2 − |∇S − qA|2
)
u

∂
∂t

((
∂S
∂t + qϕ

)
u2
)
−∇.

(
(∇S − qA) u2

)
= 0

−∇.
(
∂A
∂t +∇ϕ

)
+ m2

1ϕ+ q
(
∂S
∂t + qϕ

)
u2 = 0 (KGMP)

∆gA + ∂
∂t

(
∂A
∂t +∇ϕ

)
+ m2

1A = q (∇S − qA) u2 .

Assume A and ϕ depend on the sole spatial variables (static case),
and look for standing waves solutions u(x)e−iωt . The fourth
equation gives that

∆gA + (q2u2 + m2
1)A = 0 .

This implies A ≡ 0 since
∫

(∆gA,A) =
∫
|dA|2. Since S = −ωt

the second equation is automatically satisfied. The full system
reduces to its first and third equation. Letting ϕ = ωv , we are led
to the system
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{
∆gu + Φ(x , v)u = up−1

∆gv +
(
m2

1 + q2u2
)
v = qu2 ,

(Sω)

where Φ(x , v) = m2
0 − ω2(qv − 1)2. Let 2? = 2n

n−2 be the critical

Sobolev exponant for H1. With respect to the first equation in
(Sω) the system is energy subcritical when p < 2? and energy
critical when p = 2?. The second equation is subcritical when
n = 3, critical when n = 4, and supercritical when n ≥ 5.

The system is trully coupled thanks to the Proca mass m1. If
m1 = 0 then v = 1/q and system → ∆gu + m2

0u = up−1.

In the case of R3, when p < 2? and m1 = 0 (here again the list is
certainly far from being exhaustive) : D’Aprile, d’Avenia, Azzollini,
Benci, Bonanno, Cassani, Fortunato, Georgiev, Ghimenti, Mugnai,
Pisani, Pomponio, Siciliano, Vaira, Visciglia (existence of a
solution). The critical case in the closed setting has been
investigated by Druet, H., Thizy, Truong, Vétois, Wei (2010-2015,
compactness, non compactness, phase compensation, existence of
a solution).
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Examples of results in the S3 and S4 model cases :
D = Druet, T = Truong, V = Vétois, W = Wei (0 ≤ ω2 ≤ m2

0 , Sg scalar curvature)

[1] Case of S3 : ( n−2
4(n−1)

Sg = 3
4

)

Resonant StatesHW A priori boundsDH

(full compactness)

I —

♣
♣
♣
g
X —

♣
♣
♣
g
X —

♣
♣
♣
g
X —

♣
♣
♣
g
X —

♣
♣
♣
g
X —————————– I

0 m2
0 − n−2

4(n−1)Sg m2
0 ω2

[2] Case of S4 : ( n−2
4(n−1)

Sg = 2)

Phase stabilityDHV A priori boundsHT

(compactness of finite energy standing waves) (full compactness)

Resonant statesDHV

I ——————————

♣
♣
♣
g
X —————————— I

0 m2
0 − n−2

4(n−1)Sg m2
0 ω2
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V. A less drastic reduction of the equations

Return again to the original system
∂2u
∂t2 + ∆gu + m2

0u = up−1 +
((

∂S
∂t + qϕ

)2 − |∇S − qA|2
)
u

∂
∂t

((
∂S
∂t + qϕ

)
u2
)
−∇.

(
(∇S − qA) u2

)
= 0

−∇.
(
∂A
∂t +∇ϕ

)
+ m2

1ϕ+ q
(
∂S
∂t + qϕ

)
u2 = 0 (KGMP)

∆gA + ∂
∂t

(
∂A
∂t +∇ϕ

)
+ m2

1A = q (∇S − qA) u2 .

Still assume that A and ϕ depend on the sole spatial variables
(static case), but now look for solutions like

Ψ(x , t) = u(x)e i(S(x)−ωt) .

These solutions for such kind of systems were introduced in Benci
and Fortunato [CMP, 2010] with the specific choice of S given by

S(x) = `Im ln(x1 + ix2) ,

where ` is an integer (spinning Q-ball). In the specific case of the
KGMP-system : D’Avenia, Mederski and Pomponio [J. Math.
Phys., 2017].
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We slightly differ from this approach here by considering that S is
a free parameter in the system. When we plugg Ψ in the system,
and we assume that A and ϕ do not depend on t, we do get the
following static system of equations

∆gu + m2
0u = up−1 +

(
(qϕ− ω)2 − |∇S − qA|2

)
u

∇.
(
(∇S − qA) u2

)
= 0

∆gϕ+ m2
1ϕ+ q (qϕ− ω) u2 = 0 (KGMPs)

∆gA + m2
1A = q (∇S − qA) u2 .

In the limit case m1 = 0, the second equation is automatically
satisfied (since δ∆g = 0). When m1 6= 0, thanks to the fourth
equation in this system, still since δ∆g = 0, the second equation in
the system can be omitted and replaced by the Coulomb gauge
equation δA = 0. One more remark is that the Coulomb gauge
equation δA = 0 implies that ∆gA = ∆gA, where ∆g = dδ + δd is
the usual Hodge-de Rham Laplacian on forms.
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VI. Let’s discuss at least one theorem . . .

In what follows n = 3 and the system we investigate is written as
∆gu + Φ(x , v ,A)u = up−1

∆gv +
(
b + q2u2

)
v = qu2

∆gA + bA = q (∇S − qA) u2 ,

(E )

where q > 0,

Φ(x , v ,A) = a− ω2 (qv − 1)2 + |∇S − qA|2 ,

ω ∈ R, a, b,S ∈ C∞(M) are smooth functions with a, b > 0 in M,
∆g = −divg∇ is the Laplace-Beltrami operator when acting on
functions u and v in the two first equations, ∆g = δd + dδ is the
Hodge-de Rham Laplacian when acting on 1-forms A in the third
equation and the pure power nonlinearity p ∈ (2, 6].

Here a, b, S and ω are parameters. The unknowns are u, v and A.
We have let ϕ = ωv . Also b is now a function which extends the
role of m2

1, and a is a function which extends the role of m2
0.
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Theorem (H.-Thizy, 2017)

(M, g) smooth closed 3-manifold, q > 0 real, a, b,S ∈ C∞ with
a > 0 and b ≥ 0 in M. Assume that Ricg + bg > 0 in M. Let
ω ∈ (−minM

√
a,+ minM

√
a) and p ∈ (2, 6]. Assume that when

p = 6 is critical,
a− ω2 + |∇S |2 < Λg

in M if b 6≡ 0, or that a + |∇S |2 < Λg in M if b ≡ 0, where
Λg ∈ C∞, Λg > 0, is such that ∆g + Λg has positive mass. Then

∆gu + Φ(x , v ,A)u = up−1

∆gv +
(
b + q2u2

)
v = qu2

∆gA + bA = q (∇S − qA) u2 ,

(E )

possesses a smooth nontrivial solution (u, v ,A) with u > 0 and
v > 0, and the set S of solutions (u, v ,A) of (E ) with u ≥ 0 and
v ≥ 0 is compact in the C 2-topology.
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The existence part in the theorem misses the gauge equation
δA = 0. On the other hand the compactness part in the theorem
obviously remains valid for the full system (E ) + δA = 0.

Corollary (Almost the gauge equation)

Let θ ∈ (0, 1). Let a, ω satisfy that a− ω2 < Λg in M if b 6≡ 0, or
that a < Λg if b ≡ 0, where Λg > 0 is a smooth positive function
such that ∆g + Λg has positive mass. There exists ε0 > 0 such
that if

‖∇S‖
C0,θ
R
< ε0 ,

then (E) possesses a smooth nontrivial solution (uS , vS ,AS) and

there holds that δAS → 0 in C 1
R as S → 1 in C 1,θ

R .
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VII. Few words on the proof of the theorem

There are several levels in the proof of the theorem. Let H1
R be the

Sobolev space of functions in L2 with one derivative in L2 and H1
V

be the corresponding space for 1-forms.

Level 1 : functional analysis.1

Assume that Ricg + bg > 0 in M, in the sense of bilinear forms,
where Ricg is the Ricci curvature of g . For any u ∈ H1

R , there
exists a unique Au ∈ H1

V such that

∆gAu +
(
b + q2u2

)
Au = q(∇S)u2 .

There exists a constant C > 0, depending only on q and S , such
that |Au| ≤ C in M for all u ∈ H1

R . The map A : H1
R → H1

V is
differentiable as well as the map Φ : H1

R → R defined by
Φ(u) =

∫
M (∇S − qAu,∇S) u2dvg . The differential of Φ is given

for all u, h ∈ H1
R by

DΦ(u).(h) = 2

∫
M
|∇S − qAu|2 uhdvg .
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Level 2 : functional analysis.2

Assume that b > 0 in M. For any u ∈ H1
R , there exists a unique

vu ∈ H1
R such that

∆gvu +
(
b + q2u2

)
vu = qu2 .

There holds that 0 ≤ vu ≤ 1
q for all u ∈ H1

R . The map

v : H1
R → H1

R is differentiable as well as the map Ψ : H1
R → R

defined by Ψ(u) =
∫
M (1− qvu) u2dvg . The differential of Ψ is

given by

DΨ(u).(h) = 2

∫
M

(1− qvu)2 uhdvg

for all u, h ∈ H1
R .

⇒ if (u, v ,A) solves (E ), then v = vu and A = Au.
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Formally, solutions of our system are critical points of the
functional I : H1

R × H1
R × H1

V → R given by

I (u, v ,A) =
1

2

∫
M
|∇u|2dvg −

ω2

2

∫
M
|∇v |2dvg +

1

2

∫
M
|dA|2dvg

+
1

2

∫
M
|δA|2dvg +

1

2

∫
M
au2dvg −

ω2

2

∫
M
bv2dvg

− ω2

2

∫
M
u2(1− qv)2dvg +

1

2

∫
M
b|A|2dvg

+
1

2

∫
M
|∇S − qA|2u2dvg −

1

p

∫
M
|u|pdvg

This is a highly competitive functional !
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Level 3 : variational analysis.

We define the functional Ip : H1
R → R by

Ip(u) =
1

2

∫
M
|∇u|2dvg +

1

2

∫
M
au2dvg −

ω2

2

∫
M

(1− qvu) u2dvg

+
1

2

∫
M

(∇S − qAu,∇S) u2dvg −
1

p

∫
M

(u+)pdvg ,

where Au and vu are as before, and where u+ = max(0, u). The
functional Ip is differentiable and if u is a critical point of Ip, then
(u, vu,Au) is a smooth solution of (E ) with u, v ≥ 0.

⇒ existence of a solution in the subcritical
case by using MPL (by compactness of
Sobolev embeddings).
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Level 4 : existence in the critical case.

MPL + Schoen’s test function analysis. Given u0 ∈ H1
R , define

c(u0) = inf
P∈P

max
u∈P

I6(u) ,

where P denotes the class of continuous paths joining 0 to u0 and
I6 is the functional Ip in the critical case p = 6. Picking u0 as a
Schoen’s test function, assuming that we do have the assumption
on a, ω and S in the theorem, there exists δ0 > 0 such that

δ0 ≤ c(u0) ≤ 1

3K 3
3

− δ0 ,

where K3 is the sharp constant in the Euclidean Sobolev inequality.
Then the Aubin-Brézis-Nirenberg arguments work for MPL. Below
the best constant ⇒ compactness ⇒ existence of a nontrivial
solution (but now) in the critical case.
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Level 5 : Compactness in the subcritical case.

Let (uα, vα,Aα)α be a sequence of solutions of our equations.
Then vα = vuα and Aα = Auα . The whole point then is to control
uα. Assume by contradiction that

max
M

uα → +∞

as α→ +∞. Rescale the uα’s properly at their maximum point, go
the limit and get a nontrivial nonnegative solution in R3 of

∆u = up−1 .

By Gidas-Spruck such an equation does not have any nonnegative
nontrivial solution. The uα’s are bounded in L∞. We conclude to a
C 2-convergence with the Gilbarg-Trüdinger standard elliptic PDEs
estimates. Q.E.D.
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The 3-dimensional strategy we discuss here goes back to Li-Zhu
and Schoen’s work on the 3-dimensional Yamabe problem.

Level 6 : Compactness in the critical case.1
Prove that there are no accumulations of bubbles.

The assumptions are those of the theorem. Let (uα, vα,Aα)α be a
sequence of solutions of our equations. Then vα = vuα and
Aα = Auα . The whole point then is to control uα. Let (xα)α be a
sequence of model points for the blow-up. Basic scaling :

µ
1
2
αuα

(
expxα(µαx)

)
→
(

1 +
|x |2

3

)− 1
2

in C 1
loc(R3) as α→ +∞, where µα = uα(xα)−2 (µα → 0). This is

nothing but the Gidas-Spruck seminal scaling argument when
transposed to the critical case.

E.Hebey - 2018



We could have a configuration like

A lot of bubbles (possibly infinite number) with cluster’s type
configurations (groups of bubbles interacting one with another).
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We modelize the configuration by
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Make a list of possible (theoretical) blow-up points (xi ,α)α. Let dα
be the minimum distance between two blow-up points. Assume
(free) that dα = dg (x1,α, x2,α) is the distance between the two first
points. Assume that dα → 0 as α→ +∞.

Rescale the uα’s at x1,α, with a scale like the r1,α that we do have
in the picture. The r1,α’s turn out to be of the order of the dα’s,
and there holds that

dαµ
− 1

2
1,αuα

(
expx1,α

(dαx)
)
→
√

3

|x |
+H(x)

in C 2
loc (B0(2)\{0}) as α→ +∞, where H is a harmonic function

in B0(2) which satisfies that H(0) ≤ 0.
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There are blow-up points which are at a distance dα of x1,α and
others which are not. Rescale the uα’s, vα’x and Aα’s at x1,α with
an order like dα. The vα’s and Aα’s are bounded (Levels 1 & 2) ⇒
they do not count. Rescaling the uα’s, using the formula in the
preceding slide, and going to the limit in the equations we do get a
convergence of the rescaled uα’s to a function like

G̃ =
N∑
i=1

Λi

|x − x̃i |
+ Ĥ(x)

where Ĥ is harmonic, the Λi ’s are positive and the x̃i ’s are
rescaling of the blow-up points which interact with x1,α. By
assumption the x1,α’s and x2,α’s should be counted in this story, so
at least N ≥ 2. And also x̃1 = 0. By the preceding slide

N∑
i=2

Λi

|x̃i |
+ Ĥ(0) ≤ 0 .

This is impossible since G̃ ≥ 0 implies that Ĥ(0) ≥ 0. As a
consequence dα 6→ 0. This is step 1 in the analysis.
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In other words we just need to handle the case of isolated bubbles
like

There is necessarily a finite number of such objects (possibly many,
all isolated).
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Level 7 : Compactness in the critical case.2
Conclude in the case of isolated bubbles.

By the preceding step in the blow-up analysis, we do have bounded
energy, we recover a well defined H1-Struwe type decomposition
for the uα’s ⇒ we recover well defined blow-up points for the uα’s,
these blow-up points are isolated. Plugg our uα’s into a
Riemannian version of the Pohozaev identity. Still assuming that
maxM uα → +∞ we rescale properly the equation satisfied by the
uα’s at the blow-up point with the maximum weight (lowest
bubble). The vα’s and Aα’s are smoothed by their equations (they
converge). We get a convergence for the rescaled uα’s to a sum of
Green’s functions

Ĝ = 4π
√

3
∑

µ
1/2
i G (xi , ·) ,

where µi > 0 and G is the Green function of ∆g + Φ∞, where

Φ∞ = a− ω2 + |∇S |2 .
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The Green’s function can be written as

G (x , y) =
1

ω2dg (x , y)
+ R(x , y) ,

where R is continuous on the whole of M ×M. The Pohozaev
identity implies that

µ
1/2
i

N∑
j=1

µ
1/2
j R(xj , xi ) ≤ 0 .

By construction R(xj , xi ) ≥ 0 for i 6= j . By our assumption that
Φ∞ ≤ Λg , where Λg is such that ∆g + Λg has positive mass, we
do get that R(xi , xi ) > 0. A contradiction.

Thus maxM uα 6→ +∞ and the uα’s are bounded in L∞. We
conclude to a C 2-convergence with the Gilbarg-Trüdinger standard
elliptic PDEs arguments. Q.E.D.
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Thank you for your attention
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