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. The full KGMP-system.

The physics purpose of Klein-Gordon-Maxwell-Proca systems is
that they provide a model for the interaction between a charged
relativistic matter scalar field and the electromagnetic field that it
generates. In other words, the electromagnetic field is both
generated by and drives the particle field.
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Here : massive version of the more classical Klein-Gordon-Maxwell
equations. The vector field representing the electromagnetic field
has a mass.
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Nonlinear Klein-Gordon total functional, minimum coupling rule

0t = 0+ igp and V — V — igA,
where (¢, A) gauge potential representing the electromagnetic
field, governed by the Maxwell-Proca Lagrangian. Consider the two
Lagrangian densities
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Here Vx = xd, x Hodge dual, d differentiation. Massive version
of KGM theory. Here 1) matter field, mg its mass, g its charge,
(A, v) gauge potentials representing the electromagnetic vector
field, my is the Proca mass.
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Consider the total action functional
S, p, A) = //(»CNKG + Lup) dvgdt .

Write 1 in polar form as ¢(x, t) = u(x, t)e>(t) for u > 0 and
u,S: M xR — R. Then the total action rewrites as

stesien =5 [ [((50) - vt ) e
L] [
SIG W)Q - 195 - ) o
=y /(1 Ve
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We can take the variation of S with respect to u, S, ¢, and A. For
instance, if we let w, be the volume form of (M, g), then

1 (d/v . A’2> (B) - /(*dA,*dB)wg (quadratic + Vx = *d)

2 \ dA

= (—1)”_1/(*dA, (xdx) * B) wg (ox = (=1)"1in A1)
— /(*dA,é* B)wg (6=(-1)"1xdx in A"1)
_ / (d % dA, %B) w; (Stokes formula)
= /(*5dA,*B)wg (dx = %6 in A?)
- / (x6dA) A (x % B) (since a A (x8) = (a, B)wg in AP)
= (-1t /(a«SdA) A B (o = (=1)" L in A1)
:/(6dA, B) wg (anB=(-1)""18Aaforaec At el
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In particular,

(&) -

for all B, where Zg = dd, 0 codifferential. Taking the variation of

S, p, A //(»CNKG + Lup) dvgdt .

with respect to u, S, ¢, and A, we then get four equations which
are written as

6t2 Y+ Agu+miu=uPl+ <(%+qu)2— |V5—qA\2> u
o (52 +qs0) ?) = V. ((VS —qA)u?) =0
-v. (%4 —I—ch)+m1<p+q(at—|—q<p) u? =0 (KGMP)
NgA+ 2 (2 + V) + m?A=q(VS — qA) u?
This is the nonlinear Klein-Gordon-Maxwell-Proca system. As

my — 0 (or letting m; = 0), the nonlinear KGMP system reduces
to the nonlinear Klein-Gordon-Maxwell system.
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This kind of system, without the Proca contribution (take m; = 0),
without external force (cancel the uP~!-term), but with the full
time dependency, has been investigated by several people (the list
is certainly far from being exhaustive) like Cuccagna, Linblad,
Keel, Klainerman, Machedon, Rodnianski, Roy, Selberg, Sterbenz,
Tataru, Tesfahun and Tao (and they prove local well-posedeness,
global well-posedeness n = 3, global well-posedeness for small
inital data n > 4, global well-posedeness below the energy norm,
critical dimension n = 4, asymptotic behavior).

X%k

. 2
58 + Dgu+ miu = uP™ 1+<(?Tf+q%0) —|V5—qA|2>U

§t((at+qw) )=V (VS —aA) ) =0
-v.(& +V<p)+m1<p+q(at+qs0)uz—0 (KGMP)
AgA+m(ﬁ+Vg0)+m1A—q(V5 qA) u?
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Il. Why do we refer to Maxwell-Proca?

Somehow we go backward with respect to what dispersive
mathematicians do. Assume n = 3. Let the electric field E, the

magnetic induction H, the charge density p, and the current
density J be given by

E=— <%? + V<p> ;
H=VxA,
p=- (85+qs0> qu® ,
ot
J=(VS—qA)qu?.
The two last equations in (KGMP) give rise to the first pair of the

Maxwell-Proca equations with respect to a matter distribution
whose charge and current density are respectively p and J.

We get for free the second pair of the Maxwell-Proca equations.

E.Hebey - 2018



In other words the two last equations in the (KGMP)-system can
be rewritten as

V.E=p—mip,
0E
VxE—s—a—H:O,V.H:O.
ot

The first equation in the (KGMP)-system is the nonlinear
Klein-Gordon matter equation. Namely

Pu O
82+A u+ miu=uP” —l—W.
The second equation in the (KGMP)-system is the charge
continuity equation % + V.J =0, which is equivalent to the
Lorentz condition
d¢

A+ -2 =
V+a 0.

The (KGMP)-system is equivalent to this system of 6 equations.
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The equivalence between the charge continuity equation and the
Lorentz condition involves only basic computations and uses in a
fondamental way the condition m; # 0. The Maxwell-Proca
equations are written as

E
V.E=p-— mlgp, VXH—(?%—J mlA

H
VxE—i—aa:O, V.H=0.
The charge continuity equation states that £+ V.J=0. Taking

the derivation of the first Maxwell equation W|th respect to time,
and the divergence of the second equation,

op 0E 2890 OE
8t+v'/ V@ +m 15 +V.(V xH) - Va + miV.A
d¢
= A
m1 <V +8t)

since V.(V x H) = §(xd)H, § = x~1dx in Al, sx = 1 in A?, and
d? = 0 so that V.(V x H) = 0. The condition m; # 0 breaks the
gauge invariance and enforces the Lorentz gauge.
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ll1l. The physics behind the Proca contribution

The Maxwell equations in Proca form are
OE

V.Ezp—m%gp,VXH—a:J—m%A,
H
VxE—i—a—:O,V.H:O.
ot

They reduce to the Maxwell equations as m; — 0. Proca (1936)
was using the Lorentz formalism. Under this form, referred to as
the “"modern format”, the equations appeared for the first time in
a paper by Schrodinger : “The earth’s and the sun’s permanent
magnetic fields in the unitary field theory’ (1943). These equations
have been discussed by several physicists including, in addition to
Proca and Schrodinger, people like De Broglie, Pauli, Yukawa, and
Stueckleberg. .. The whole point in these theories is that m; is
nothing but than the mass of the photon : we are talking about a
theory where photons have a mass (“the photon is the quantum of
the electromagnetic field including electromagnetic radiation such
as light, and the force carrier for the electromagnetic force").
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VIIL

THE EARTH’S AND THE SUN’'S PERMANENT MAGNETIC
FIELDS IN THE UNITARY FIELD THEORY.

(From the Dublin Institute for Advanced Studies.)
By ERWIN SCHRODINGER.
[Read 28 Juse. Published 20 Novemses, 1943.]

§1. SURVEY.

For mot i strong ic fields in empty space and
neglecting gravitation the Unitary Field Theory® gives the equations
(e=1)

H = curl 4

E = - d-gadV w
A 1
el H - B = -uwd

divE = -u*'V

and suggests that the constant wx-* be no# cosmically large (in which
case the equations boil down to Maxwell’s) but very roughly speaking
of the order of the radius of the earth,

Erwin Schrodinger
1887 — 1961

The Earth's and the Sun's Permanent Magnetic
Fields in the Unitary Field Theory

Erwin Schrodinger

Proceedings of the Royal Irish Academy. Section
A: Mathematical and Physical Sciences

Vol. 49 (1943/1944), pp. 135-148




Louis de Broglie, 1950

Sur une forme nouvelle de la théorie du champ soustractif

A partir de 1934, 'auteur du présent article a développé une forme
nouvelle de la théorie quantique du champ électromagnétique qu'il
a appelé ‘“la Mécanique ondulatoire du photon” et qui présentait a
ses yeux |'avantage de faire plus clairement rentrer la théorie
quantique des champs dans le cadre général de la Mécanique
ondulatoire des particules a spin. Dans cette théorie, qui a été
exposée dans plusieurs Ouvrages, il a été attribué au photon une
masse propre extrémement petite, mais non nulle, et nous avons
été ainsi conduit des 1934 3 prendre comme équations de la
particule de spin 1 des équations qui, mises sous forme vectorielle,
sont des équations du type classique de Maxwell complétées par de
petits termes contenant la masse propre. Des équations de méme
forme ont été ensuite proposées, en 1936, par M. Alexandre Proca,
et on leur donne aujourd’'hui dans la théorie du méson le nom
d’'équations de Proca. En somme ces équations sont les équations
générales des particules de spin 1.
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Toue 11. AoUr-Serresmune 1950,

LE JOURNAL DE PHYSIQUE

LE RADIUM

SUR UNE FORME NOUVELLE DE LA THEORIE DU « CHAMP SOUSTRACTIF »

Par M. Louits pE BROGLIE.

Sommaire. — Aprés avoir fait un nouvel exposé des prineipes de I « théorie du champ soustraetif »
aw'ila récemment proposée, Iautear montre comment on ponldmsutllcl]lénrmr\[ rer Ia liaison enlre
les corpus él s ¢t les champs s, avee lesquels ils

action el précise certains aspects inléressanis de cetle aterac tion, 11 rnmn-l\e ensuile cos

donner anx éléments des

tiviste et étudie Iinfluence des

se présentent dans le calenl des culs effeetués par M. R. P. I
man, il détermine d'une facon approximative la valeur des ineréments de masse qui résultent pour
Télectron de son interation avec le champ photonique et un champ mésonique : les résultats oblenus
paraissent aceeptables.

1. Introduction. — A partir de 1934, l'autenr ules électrisées, ultat inadmissible qui emba-
du présent article a développé une forme nouvelle rasse les théoriciens depuis plus de 20 ans,
de la théorie quantique du champ électromagnétique Récemment, nous avons repris sous une forme

quil a appelée « la Mécanique ondulatoire du pho-
ton » et qui présentait & ses yeux l'avantage de
faire plus clairement rentrer la théoric quantique
des champs dans le cadre général de la Mécanique
ondulatoire des particules & spin. Dans cette théorie
qui a ¢té exposeée dans plusieurs Ouvrages [1, 2, 3, 4],
il a été attribué au photon une masse propre extré-
mement pelite, mais non nulle, et nous avons ¢té

: yrendre_comme équa-

nouvelle une tentative (théorie du champ soustractif)
faite naguére par M. Stuckelberg pour lever cette
difficulté [5] et reprise ensuite de diverses facons
par MM. Bopp [6], Pais [7) et Feynman [8]. Nous
avons exposé mos idées nouvelles dans quatre
Notes aux Comples rendus de UAcadémie des
Sciences [9] et dans un Mémoire de Porlugaliae
mathematica [10].

Sans_reprendre ici le détail des calculs donnés
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What about nowdays ? Well, people are still pretty much
enthusiastic. . .

Eric Adelberger, Gia Dvali, Andrei Gruzinov

Photon-mass bound destroyed by vortices
Phys. Rev. Lett., 2007.

The possibility of a nonzero photon mass remains one of the most
important issues in physics , as it would shed light on fundamental
questions such as charge conservation, charge quantization, the
possibility of charged black holes and magnetic monopoles, etc.
The most stringent upper bounds on the photon mass listed by the
particule Data Group, m < 3 x 102" eV and m < 2 x 10716 eV,
are based on the assumption that a massive photon cause
large-scale magnetic fields to be accompanied by an energy density

m3 A, AN

associated with the Proca field ;\# that describes the massive
photon.
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Alexandru Proca Louis de Broglie
1897-1955 1892-1987

Some possible references :

[1] G.T.Gillies, J.Luo, L.C.Tu, The mass of the photon, Report on
Progress in Physics, 68, 2005, 77-130.

[2] A.S.Goldhaber, M.M.Nieto, Photon and Graviton mass limits,
Reviews of Modern Physics, 82, 2010, 939-979.

[3] H.Ruegg M. Ruiz-Altaba, The Stueckleberg field, International
Journal of Modern Physics A, 19, 2004, 3265-3348.
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IV. A drastic elliptic reduction of the equations

Return to

()tz Y+ Agu+ miu = uP~ 1+<(%+q¢)2—|V5—qA\2)u
§t((at+qv) ?) = V. ((VS —qA)u?) =0

V(L +Ve)+mio+q(% +qp)u?=0 (KGMP)
AgA—l—a(m—&-V«p)—&-mlqu(VS—qA)

Assume A and ¢ depend on the sole spatial variables (static case),
and look for standing waves solutions u(x)e'“t. The fourth
equation gives that

AgA+ (PP +mHA=0.

This implies A = 0 since [(AgA, A) = [ |dAJ?. Since S = —wt
the second equation is automatically satisfied. The full system
reduces to its first and third equation. Letting ¢ = wv, we are led
to the system
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{Agu+¢(x, V)u = uP~t (5.)

Agv + (m% + q2u2) v =qu?,
where ®(x,v) = m3 — w?(qv — 1)%. Let 2* = 21 be the critical
Sobolev exponant for H1. With respect to the first equation in
(S.) the system is energy subcritical when p < 2* and energy

critical when p = 2*. The second equation is subcritical when
n = 3, critical when n = 4, and supercritical when n > 5.

The system is trully coupled thanks to the Proca mass m;. If
my = 0 then v =1/q and system — Agu+ miu = uP~t,

In the case of R3, when p < 2* and m; = 0 (here again the list is
certainly far from being exhaustive) : D'Aprile, d'Avenia, Azzollini,
Benci, Bonanno, Cassani, Fortunato, Georgiev, Ghimenti, Mugnai,
Pisani, Pomponio, Siciliano, Vaira, Visciglia (existence of a
solution). The critical case in the closed setting has been
investigated by Druet, H., Thizy, Truong, Vétois, Wei (2010-2015,
compactness, non compactness, phase compensation, existence of

3 solution).
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Examples of results in the S? and S* model cases :

D = Druet, T = Truong, V = Vétois, W = Wei (0 < w? < mg, Sg scalar curvature)

[1] Case of S® : (=25, - 1)

Resonant States"" A priori bounds®"
(full compactness)
» » » & &
* * * * *
& & & & &
Y Y Y Y Y
[ — X —X—X—X—X I
2 2
0 0 (n 1)5 mo w2
[2] Case of S* : (=25, - 2)
Phase stability®" A priori bounds"T
(compactness of finite energy standing waves) (full compactness)
Resonant states®™
&
L]
&
Y
I X I
2 2
0 mO 4(!1 1)5 mo UJ2
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V. A less drastic reduction of the equations

Return again to the original system
g% +Agu+ m(z)u =P 14 ((%f + q@)2 —|VS — qA\Q) u
2 (%2 + qp) v?) — V. ((VSf gA)u?) =0
~VA(G + Vo) +mio+q(F; +ap)* =0 (KGMP)
DA+ 2 (98 + V) + m2A=q(VS — gA) u?.
Still assume that A and ¢ depend on the sole spatial variables
(static case), but now look for solutions like
W(x, t) = u(x)e’CCI=wt)
These solutions for such kind of systems were introduced in Benci
and Fortunato [CMP, 2010] with the specific choice of S given by
S(x) = limIn(xy + ix2) ,

where / is an integer (spinning Q-ball). In the specific case of the
KGMP-system : D'Avenia, Mederski and Pomponio [J. Math.
Phys., 2017].
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We slightly differ from this approach here by considering that S is
a free parameter in the system. When we plugg WV in the system,
and we assume that A and ¢ do not depend on t, we do get the
following static system of equations

Agu+ miu=uPl + ((qgo —w)?—|VS - qA\z) u
V.(VS—qgA)u?) =0

A <p+m1¢+q(q )u2*0 (KGMP;)

DA+ miA=q(VS — qA) v?

In the limit case m; = 0, the second equation is automatically
satisfied (since 6A; = 0). When my # 0, thanks to the fourth
equation in this system, still since 6Zg = 0, the second equation in
the system can be omitted and replaced by the Coulomb gauge
equation A = 0. One more remark is that the Coulomb gauge
equation JA = 0 implies that AgA = AgA, where A, = dé+4dd is
the usual Hodge-de Rham Laplacian on forms.

E.Hebey - 2018



VI. Let’s discuss at least one theorem ...

In what follows n = 3 and the system we investigate is written as

Agu+ d(x,v,A)u = uP!
Dgv+ (b+q*u?) v =qu? (E)
AgA+ bA=q(VS — qA) u?,

where g > 0,
O(x,v,A) = a—w?(qv—1)2+|VS — gA]? ,

w€ER, a,b,S € C*(M) are smooth functions with a, b > 0 in M,
Ag = —div,V is the Laplace-Beltrami operator when acting on
functions u and v in the two first equations, Ay = dd + d¢ is the
Hodge-de Rham Laplacian when acting on 1-forms A in the third
equation and the pure power nonlinearity p € (2, 6].

Here a, b, S and w are parameters. The unknowns are u, v and A.
We have let ¢ = wv. Also b is now a function which extends the
role of m%, and a is a function which extends the role of mg.
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Theorem (H.-Thizy, 2017)

(M, g) smooth closed 3-manifold, g > 0 real, a, b, S € C* with
a>0andb>0inM. Assume that Ric; + bg >0 in M. Let
w € (—minp /a,+ miny \/a) and p € (2,6]. Assume that when
p = 6 is critical,

a—w’+|VS]P <A,
in M if b# 0, or that a+ |VS|?> < Ag in M if b= 0, where
Ng € C*°, Ng >0, is such that Ag + Ag has positive mass. Then

Agu+ O(x,v,A)u = uP!
Dgv+ (b+q*u?) v = qu? (E)
DA+ bA=q(VS — gA) u?,

possesses a smooth nontrivial solution (u, v, A) with u > 0 and

v > 0, and the set S of solutions (u, v, A) of (E) with u >0 and
v > 0 is compact in the C?-topology.
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The existence part in the theorem misses the gauge equation
0A = 0. On the other hand the compactness part in the theorem
obviously remains valid for the full system (E) + JA = 0.

Corollary (Almost the gauge equation)

Let 0 € (0,1). Let a,w satisfy that a — w? < Ag in M if b# 0, or
that a < Ag if b= 0, where Ay > 0 is a smooth positive function
such that Ay + Ag has positive mass. There exists g > 0 such
that if

195l cos < <o

then (E) possesses a smooth nontrivial solution (us, vs, As) and
there holds that dAs — 0 in C,}, asS—1in C,%,’e.
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VIl. Few words on the proof of the theorem

There are several levels in the proof of the theorem. Let H,l? be the
Sobolev space of functions in L? with one derivative in L? and H},
be the corresponding space for 1-forms.

Level 1 : functional analysis.1 )

Assume that Ricg + bg > 0 in M, in the sense of bilinear forms,
where Ricg is the Ricci curvature of g. For any u € H%, there
exists a unique A, € H\l/ such that

DAy + (b+ q?u?) Ay = q(VS)? .

There exists a constant C > 0, depending only on g and S, such
that |A,| < Cin M for all u € Hy. The map A: Hy — H{ is
differentiable as well as the map @ : H}-(. — R defined by

®(u) = [}, (VS — Ay, VS) u?dvg. The differential of ® is given
for all u, h € H} by

DO(u).(h) = 2/ VS — gA[? uhdv, -
M



Level 2 : functional analysis.2 J

Assume that b > 0 in M. For any u € H}, there exists a unique
vy € H,l? such that

Agv, + (b+ q2u2) Ve = qu® .

There holds that 0 < v, < % for all u € Hy. The map

v H}‘, — H,l? is differentiable as well as the map ¥ : H,l? —R
defined by W(u) = [, (1 — qv,) udvg. The differential of V is
given by

DV(u).(h) = 2/ (1 — qv,)? uhdv,
M
forall u,h e H,l?.

= if (u, v, A) solves (E), then v = v, and A= A,.
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Formally, solutions of our system are critical points of the
functional / : Hy x Hi x Hl, — R given by

(u,v,A) / |Vu]2dvg—/ IVv|?dvg + / |dA|?dv,
/ ]6A2dvg—l—/ auzdvg—z/ bv?dv,
M
- / (1 —qv)?dvg + / b|Al? dvg

2/ VS — gAJ? 2dvg—/ |u|Pdvg

This is a highly competitive functional!
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Level 3 : variational analysis.

We define the functional I, : Hy — R by

1 2 1 2 w’ 2
Ip(u) = 5 |Vul“dvg + 5[ au dvg — - (1 —qvy) udvg
M M M
1 1
+ / (VS — A, VS) iPdv, — / (uT)Pdvg ,
2 )m pJm

where A, and v, are as before, and where u™ = max(0, u). The
functional /, is differentiable and if u is a critical point of /,, then
(u, vy, Ay) is a smooth solution of (E) with u,v > 0.

= existence of a solution in the subcritical

case by using MPL (by compactness of
Sobolev embeddings).

J(0)

E.Hebey - 2018



Level 4 : existence in the critical case. J

MPL + Schoen'’s test function analysis. Given up € H,l?, define

ug) = inf max/s(u

c(uo) = PEP ueP 6(u)

where P denotes the class of continuous paths joining 0 to uy and
Is is the functional /, in the critical case p = 6. Picking ug as a
Schoen’s test function, assuming that we do have the assumption
on a, w and S in the theorem, there exists g > 0 such that

do < c(ug) < —do ,

3K3
where K3 is the sharp constant in the Euclidean Sobolev inequality.
Then the Aubin-Brézis-Nirenberg arguments work for MPL. Below
the best constant = compactness = existence of a nontrivial
solution (but now) in the critical case.
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Level 5 : Compactness in the subcritical case. )

Let (tn, Vo, Aa)a be a sequence of solutions of our equations.
Then v4 = v,, and A, = A,,. The whole point then is to control
Ue. Assume by contradiction that

max u, — +00
M

as a — +00. Rescale the u,'s properly at their maximum point, go
the limit and get a nontrivial nonnegative solution in R3 of

Au=uPt.

By Gidas-Spruck such an equation does not have any nonnegative
nontrivial solution. The u,'s are bounded in L*°. We conclude to a
C?-convergence with the Gilbarg-Triidinger standard elliptic PDEs
estimates. Q.E.D.
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The 3-dimensional strategy we discuss here goes back to Li-Zhu
and Schoen's work on the 3-dimensional Yamabe problem.

Level 6 : Compactness in the critical case.1
Prove that there are no accumulations of bubbles.

The assumptions are those of the theorem. Let (uq, Vi, Aa)a be a
sequence of solutions of our equations. Then v, = v, and

An = Ay, . The whole point then is to control u,. Let (x,)q be a
sequence of model points for the blow-up. Basic scaling :

1
; xR
pdug (expy, (ptax)) — (14 3

in CE (R3) as a — +o0, where o = ta(xa) ™2 (Ha — 0). This is

nothing but the Gidas-Spruck seminal scaling argument when
transposed to the critical case.
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We could have a configuration like

A lot of bubbles (possibly infinite number) with cluster’s type
configurations (groups of bubbles interacting one with another).
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We modelize the configuration by
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Make a list of possible (theoretical) blow-up points (xjq)a. Let dy
be the minimum distance between two blow-up points. Assume
(free) that d, = dg(X1,q,X2,o) is the distance between the two first
points. Assume that d, — 0 as a — +o0.

Rescale the u,'s at xq 4, with a scale like the r; , that we do have
in the picture. The r1 ,'s turn out to be of the order of the d,'s,
and there holds that

_1 \/g
dafiy 5 Ua (expxl,a(dax)> — ™ + H(x)
in C2.(Bo(2)\{0}) as @ — +00, where H is a harmonic function

in Bp(2) which satisfies that H(0) < 0.
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There are blow-up points which are at a distance d, of x; o and
others which are not. Rescale the u,'s, v,'x and A,'s at x1 o with
an order like d,. The v,'s and A,'s are bounded (Levels 1 & 2) =
they do not count. Rescaling the u,'s, using the formula in the
preceding slide, and going to the limit in the equations we do get a
convergence of the rescaled u,'s to a function like

. LA
G = ! ]
; X %] + H(x)

where H is harmonic, the A;'s are positive and the X;'s are
rescaling of the blow-up points which interact with x; . By
assumption the x1 o's and x> ,'s should be counted in this story, so
at least N > 2. And also )"(1 = 0. By the preceding slide

Z H(0)<0.

This is impossible since G > 0 implies that H(0) > 0. As a
consequence d, # 0. This is step 1 in the analysis.
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In other words we just need to handle the case of isolated bubbles
like

Y

g
i

iy
A
RS

\
o

There is necessarily a finite number of such objects (possibly many,
all isolated).
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Level 7 : Compactness in the critical case.2
Conclude in the case of isolated bubbles.

By the preceding step in the blow-up analysis, we do have bounded
energy, we recover a well defined H-Struwe type decomposition
for the u,'s = we recover well defined blow-up points for the u,'s,
these blow-up points are isolated. Plugg our u,'s into a
Riemannian version of the Pohozaev identity. Still assuming that
maxy U, — +00 we rescale properly the equation satisfied by the
uy's at the blow-up point with the maximum weight (lowest
bubble). The v,'s and A,'s are smoothed by their equations (they
converge). We get a convergence for the rescaled u,’'s to a sum of
Green's functions

_47T\£Z,U/1/2 X,,- ,
where p1; > 0 and G is the Green function of Az + ®,, where
Do = a—w? +|VS]2.
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The Green’s function can be written as

1

Gly) = Wzdg(xa)/)

+ R(x,y) ,

where R is continuous on the whole of M x M. The Pohozaev
identity implies that

N

1/2 1/2
wi'? Y *Rg.x) <0
j=1

By construction R(xj, x;) > 0 for i # j. By our assumption that
P < Ag, where Ag is such that Ag + Ag has positive mass, we
do get that R(x;, x;) > 0. A contradiction.

Thus maxp vy, /& +00 and the u,’'s are bounded in L*°. We
conclude to a C?-convergence with the Gilbarg-Triidinger standard
elliptic PDEs arguments. Q.E.D.
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Thank you for your attention
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