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1. The Kirchhoff equations.

The Kirchhoff equation goes back to Kirchhoff in 1883.

It was proposed as an extension of the classical D’Alembert’s
wave equation for the vibration of elastic strings. The equation
is one dimensional, time dependent, and it was written as

0%u Po E [t ou, 0?u
p6t2_<h+2l_/0 2% dX)axz—O’

where L is the length of the string, h is the area of cross-section,
E is the young modulus (elastic modulus) of the material, p is the
mass density, and Py is the initial tension. Almost one century
later, Jacques Louis Lions returned to the equation and proposed
an abstract framework for the general Kirchhoff equation in higher
dimension with external force term. Lions equation was written as

82u+<a+b/ VuPdx) Au = £(x, u)

— uldx ) Au = f(x,u

ot? Q

where A = — " 8%2? is the Laplace-Beltrami (Euclidean) Laplacian.
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Let (M", g) be a closed Riemannian n-manifold, n > 3. Let

a, b,0y > 0 be positive real numbers, and h: M — R be a
Cl-function in M. The Kirchhoff equation with power that we
investigate (following a question by M. Struwe) is written as

. 9o
<a+ b/ |Vu|2dvg> Agu+ hu=uPt | (KE)
M

where A, = —divgV is the Laplace-Beltrami operator,

2< p<2F,2F = n27”2 is the critical Sobolev exponent, and we
require that u > 0 in M. As usual : the equation is subcritical if
p < 2* and critical if p = 2*.

Goal : investigate existence and compactness of the equation.

Note : compactness is investigated through the Palais-Smale
property and/or the notion of stability.
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3. The notion of stability.

Stability is associated to the notion of perturbations of (KE).

Definition (of a perturbation of (KE))

A perturbation of (KE) is any family (KE,). of equations which
are written as

. 6o
<aa + ba/ Vua|2dvg> Dguy + hoty = vkt (KE,)
M

where (aq)a and (ba)a are arbitrary sequences of positive real
numbers converging to a and b, (hy)q is an arbitrary sequence of
Cl-functions converging C! to h and (py)a is an arbitrary
sequence of powers converging to p in (2,2*].

An obvious remark is that (KE) is a perturbation of itself (take
aq = a, by = b, hy, = h and p, = p for all ).
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Definition (Bounded Stability)

Equation (KE) is said to be bounded and stable (or stable for
short) if for any sequences (an)a and (by)a of positive real
numbers converging to a and b, any sequence (hy)q of
Cl-functions converging C! to h, any sequence (pa)a of powers
converging to p in (2,2*], and any sequence (uy). of nonnegative
solutions of (KE,) there holds that, up to passing to a
subsequence, (uy)a converges strongly in C? to a nonnegative
solution of (KE).

Bounded stability means that whatever the perturbations (KE,) of
our equation (KE) we consider, whatever the sequence (uq)q Of
solutions of (KE,) we consider, the sequence (u, ), converges
strongly (up to a subsequence) in C? (to a solution of our original
equation).

Since (KE) is a perturbation of itself, stability = compactness .
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3. The subcritical case.

The kind of typical results we aim to prove is the following.

Theorem 1 (Subcritical case, H. 2016)

Let p € (2,2%). Assume Ay + 3%0 is coercive and 2(1 + 0p) # p.
Then :

(1) [Existence] (KE) always possesses a C2-positive solution.

(2) [Stability] For any perturbation (KE, ), of (KE) and any
sequence (uy)q of solutions of (KE,). there holds that, up to
passing to a subsequence, (uy), converges strongly in C? to a
nonnegative solution of (KE).

As a direct consequence of the stability part in the theorem (and
the previous remark), assuming that A, + a%o is coercive :

Corollary
(KE) is compact for any p € (2,2*) such that 2(1 + 6p) # p.
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Proof of Theorem 1 : (1) [Existence] The problem has a
variational structure. The proof follows from the standard Brézis
and Nirenberg mountain pass approach, based on the
mountain-pass lemma by Ambrosetti and Rabinowitz. The
primitive functional for (KE) is

1 ) 14609
Ip(u) = 21+ fo)b <a—i— b/M |V ul dvg>

1 1
+ / hu? dvg — / (uT)Pdvg ,
2 /m pJm

where u € H!, and H! is the Sobolev space of functions in L?
with one derivative in L?. Since M has no boundary, constant
functions can be used to go down the mountain, and we recover a
mountain pass structure. Subcriticality gives the required
compactness to have the argument work.

E-Hebey 2017



Proof of Theorem 1 continued : (2) [Stability] We prove it in 3
(by now) simple steps. We let (uy)q be arbitrary as in the theorem,
solution of (KE,)q. We define

o
K, = <aa + ba/ |Vua2dvg> ,
M
hy, 1

_ _ K Pa—2
H, = Vo = Ko " Uy .

K7a )

There holds that

Agvy + Hovy = v§°‘71 .
We branch on the Gidas-Spruck compactness argument. We prove
that :

Step 1 : (easy) We cannot have simultaneously that
IVua|[;2 = 400 as a — +o0 and ||va |1~ = O(1).

Step 2 : (very easy) (uy)s converges in C2 if |vy ||« = O(1).

Step 3 : (the Gidas-Spruck argument) We cannot have that
V|| oo — +00 as a — 0.
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4. The critical dimension in the critical case p = 2*.

A critical dimension appears in the critical case of our equations. It
acts as a threshold in dimensions in our results.

Definition (Critical dimension, H.2016)

We let d. > 0 be given by

_ 2(1+6)

d
c 00 Y

and we refer to d. as the fractional critical dimension of (KE)
when p = 2*.

It might be that d. ¢ N. There holds that d. € N iff
0o=2,1,3,3,2,1,... (ile. =25 formeN, m>3)

In what follows (KE.) refers to (KE) with p = 2*.
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5. The H'-theory and the Palais-Smale property.

Let (an)a and (by)a be sequences of positive real numbers
converging to a and b, (hy). be a sequence in C! converging C!
to h and (p,)a be a sequence converging to 2* in (2,2*]. For
ue H and o € N, we let

1 g 5 1+90
I()z - (6% + b(y/ v d

1/ 5 1/‘
+ = hyudv, — — u
2/u " % pa I\/I‘

Nonnegative critical points of /, are solutions of (KE,).

Pedvg .

A sequence (ugq ) in H is said to be a Palais-Smale sequence for
the functional family (/)q if (Io(ua)),, is bounded and [/ (uy) — 0
in (HY) as a — +oc.

[0}

The functional family (/,), is said to satisfy the Palais-Smale
property if for any Palais-Smale sequence (uq)qo for (Iy)q there
holds that, up to a subsequence, (i), converges (strongly) in H1.
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Background Theorem 1 (Struwe's H-theory)

Let (uy)a be a H-bounded Palais-Smale sequence for (Iy)q. Up to
a subsequence, either (uy)s converges strongly in H* or

k
Uo = oo + »_ KYPDBl + R,
=1l

in M for some k € N*, where us, : M — R is the weak limit in H*
(or the strong limit in L?) of the u,'s, K, is given by

0o
K, = <aa + ba/ ]Vuazdvg> ,
M

Ra — 0 in H' as a — +o0, the (BL),'s are bubbles, and the c;'s
are real numbers in [1,+00) which all equal 1 in the purely critical
case for which p, = 2* for all c.
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In the arbitrary sign case, bubbles are constructed by rescaling
solutions in R” of the fundamental equation Au = |u|?"~2u. In the
nonnegative case, thanks to Caffarelli-Gidas-Spruck, an explicit
expression for the B!'s can be given and there holds that

n—2
2
. Li,
Bi¥) = | 5oy
Hi o + n(n7—2)

for all x € M and all a, where (xj )« is a converging sequence of
points in M and (1« )q is @ sequence of positive real numbers
converging to 0 as o — +o0. Bubbles (B,), satisfy that

B, —0 inL? as a — +o00
[Ball = O(1) , and,
|Ball2: > S™2 4 0(1) forall a,

where S is the sharp constant in the Sobolev inequality. In the case
of positive bubbles, equality holds in the last equation.
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Boundedness Lemma 1 (H. 2016)

Whatever (1,)q s,

(i) Palais-Smale sequences of nonnegative functions for (Ip). are

bounded in H* either when n = dc., or when n = d. and
bS(1+b0)/o > 1,

(ii) Palais-Smale sequences of functions of arbitrary sign for
(In)a are bounded in H if Ag + -h_is coercive and n # d,,
avo

(iii) In the purely critical case, where p, = 2* for all a,
Palais-Smale sequences of functions of arbitrary sign for (lp). are
bounded in H* if Ag + 3%0 is coercive, n = d. and b > 1,

where d; the critical fractional dimension and S is the sharp
Sobolev constant.

139295930
then Palais-Smale sequences for (/). are bounded in H*.
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Proof of Lemma 1 : Lemma 1 follows from relatively easy and
standard manipulations starting from the equations (somehow in
the spirit of the Brézis-Nirenberg manipulations), using the
Poincaré and Sobolev inequalities. O

Theorem 2 (Bubble control 1, H. 2016)

Let (Io)o be an arbitrary family of functionals as above. Let (uy)a
be a H'-bounded Palais-Smale sequences for (ln)q. Suppose (U)o
blows-up with k bubbles. Then bkS"'? < 1 if n = d. and

rko—1 (KO — 1)50_1
a™ bk < W (%)
if n > d., where d. is the critical fractional dimension, S is the

sharp Sobolev constant and ko = 2%9}2 .

Proof of Theorem 2 : This is still a theorem we can prove with
(relatively) easy arguments. Key point is the energy estimate
associated to Struwe's decomposition (background Theorem 1).
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Corollary

If Ag + 3%0 is coercive, n > d. and

(KO _ 1)5071

Ko—1
a b > 7&805”/2 ,

then any family of functionals (1,). as above satisfies the
Palais-Smale property.

Proof of the Corollary : By Lemma 1, since A, + 3%0 is coercive
and n # d., Palais-Smale sequences for (I, ), are H'-bounded.
Then, up to passing to a subsequence, any Palais-Smale sequence
can be decomposed using Struwe's decomposition (background
Theorem 1). Assuming the inequality in the corollary, and since

n > d., it follows from Theorem 2 that k = 0 (zero bubble case) in
these decompositions. In other words, up to passing to a
subsequence, Palais-Smale sequences for (/) converge strongly in
H. This ends the proof of the corollary. O
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6. The bounded stability approach.

Here again we need a boundedness (finite energy) lemma.

Boundedness Lemma 2 (H. 2016)

For any perturbation (KE,,) of (KE.), and any sequence (uy)q of
nonnegative solutions of (KE,), the sequence (uy)s is bounded in
H' in each of the following cases :

(i) n=3 and 6y < 2,

(ii) n > dc,

(iii) n = d. and bS"? > 1,
(iv) n >4 and S; > 0,

where d. is the critical fractional dimension, S is the sharp Sobolev
constant and Sg is the scalar curvature of g.

v
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Proof of Lemma 2 : (ii) and (iii) are proved as in Lemma 1. We
prove (i) and (iv) with (much) more advanced arguments based on
the CP-theory and the bounded stability theory for the blow-up of
nonlinear critical elliptic equations (both in the n =3 and n > 4
cases). &

As a remark, when (i), (ii), (i) or (iv) apply, then any sequence
(ua)a of nonnegative solutions of (KE,) is a Palais-Smale sequence
for (Io)a, and what has been said in the previous section applies.

We can think of bounded stability as sort of a Palais-Smale
property but restricted to sequences of solutions of equations like
(KE,). Of course one expects to get more precise results.

As in the Palais-Smale case we can ask for a bubble control in case
of blow-up. We let k,.x be the maximal number of bubbles that
blowing-up sequences of solutions of perturbed equations (KE,)
associated to a given equation (KE.) can have. Possibly

kmax = 400, in particular if there is one sequence (KE,) which
possesses a unbounded sequence in H! of solutions.
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According to the above remarks, and to Theorem 2, we know that
if n = d., and either S > 0 (and n > 4) or bS™/? > 1, then

bkmaxS™? < 1. (H1lneql)
And we also know that if n > d., then

(Hjo — 1)'{071

ro—1
a bkmax < K
— 0 2 )
Ko sn/

(H1Ineq2)

where kg = %. Indeed, in these cases, any sequence (uq)q Of

solutions of (KE,) is bounded in H* by Lemma 2. Then it is a
Palais-Smale sequence for (/y)q. In particular the bubble control

theorem of the preceding section applies. And we get the above
two equations.

More can be said. This is the subject of the following theorem. We
recall that by the positive mass theorem (Schoen-Yau, Witten)
there always exists a positive function Ag in M such that Ag + A,
has positive mass on any 3-manifold of positive scalar curvature.



Theorem 3 (Bubble control 2, H. 2016)

When n = 3 we assume that 0y < 2 and that Ag + 3%0 is coercive.
We let d. be the critical fractional dimension. We assume that
Sg >01in M. If n > d., there holds that

(¢ a)"
kmax S W ) (1)
where C > 0 is such that h < CAg in M and Ng = 30355, If
n < d., there holds that
(co—a)"
kmax < “bSn/2 Crolly (2)
where C > 0 is such that h < CAg in M and Ay > 0 is such that
Ag + Ng has positive mass when n =3, or Ng = 4(",1;_21)5g when

n>4.
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Together with Theorem 3 we do get stability result by assuming
inequalities which imply that kpax = 0. Consider the three

following inequalities :
(FLO — 1)H0_1

-1
(Ineq.1) a™ b > PUTEE

(n_ fo n/2 _ko—1 b
(Ineq2) h < m (1 + bS a > Sg y

_1 N\ b
(Ineq.3) h< (a+ <b5”/2no> 1H°> Ag .

where Ag > 0 is such that Ag + Ag has positive mass when n = 3,
or Ag 4(n 1)5 when n > 4, and where kg = 290

2.
(Ineq.2) and (Ineq.3) are like
h < C(n,a, b,00)\g

(Aubin’s type inequalities), where Ay > 0 is such that Ag + A, has
positive mass when n =3 and A; = 4(’;17:21)5g when n > 4.
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Corollary 1 (Bounded stability, H. 2016)

Let (M", g) be a closed Riemannian n-manifold, a, b,y > 0 be
positive real numbers, and h: M — R be a Cl-function in M.
When n = 3 we assume that 0y < 2 and that Ag + 3%0 is coercive.
Equation (KE.) is bounded and stable in each of the following
cases : if n = d. and bS"? > 1, or if n > d. and (Ineq.1) holds
true, or if S; >0, n > d. and (Ineq.2) holds true, or if S; > 0,

n < dc and (Ineq.3) holds true.

Another corollary to the theorem concerns existence.

Corollary 2 (Existence, H. 2016)

Let (M", g) be a closed Riemannian n-manifold, a, b,0y > 0 be
positive real numbers, and h: M — R be a Ct-function in M. We
assume that 6y < 2 when n = 3, and also assume in all dimensions
that Ag + 3%0 is coercive. Then (KE.) possesses a C?-positive
solution in each of the cases listed in Corollary 1.
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Proof of Corollary 1 : (Ineq.1), (Ineq.2) and (Ineq.3) imply that
kmax = 0, and thus that for any perturbed sequence of equation
(KE,) and any sequence (ug)q of solutions of (KE,), the u,'s do
not blow-up. Thus, up to a subsequence, they converge strongly in
H', and by regularity theory they converge in C2. &

Proof of Corollary 2 : existence follows from the existence of a
solution in the subcritical case (Theorem 1) together with the
stability from Theorem 3 (Corollary 1 above). The subcritical
solution converges to a solution of the critical equation. &

Theorem 4 (A special case, H.2016)

Let (M", g) be a closed Riemannian n-manifold of positive scalar
curvature and dimension n = 4,5. Let a, b,0y > 0 be positive real
numbers. Let (uy)o be a blowing-up sequence of solutions of the
Kirchhoff equation (KE.) with h = 4(” 2)5 Let k be the number

of bubble involved in the Struwe's decomposition of the u,'s. Then
122 = kS"/2_ In particular, (KE) is compact if 132 ¢ N*S"/2.

<
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7. The opposite question. Blowing-up examples.

On the opposite side we want to produce examples of solutions
which blow up. The following result is a direct consequence of
previous works by Pistoia and Vétois.

Proposition (Pistoia-Vétois)

Let (M", g) be a closed Riemannian n-manifold of nonpositive
scalar curvature. Assume that n = d. and 0y # 2, where d. is the
critical fractional dimension. Then there exist h: M — R™ a
positive C-function, a, b > 0 with bS"/? = 1, sequences (aq), and
(ba)a of positive real numbers converging to a and b, a sequence
(ha)a of positive Ct-function converging to h, a sequence (pa)a of
powers converging to 2* in [2,2*| and a sequence (uy)q of
solutions of (KE,) such that [, |Vua|?dvg — +00 as o — 400,
namely such that (uy)a is not bounded in H?.

Such constructions are not possible when S; > 0 (and n > 4) or
when n > d.. In the same spirit : Del Pino, Esposito, Ghimenti,
Micheletti, Pacard, Pistoia, Robert, Vaira, Vétois, Wei.
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8. Proof of Theorem 3.

The proof is based on the energy estimate associated to the
background theorem we discussed a few slides ago, and on the
following (difficult blow-up) results from the stability theory for
nonlinear critical elliptic equations. Consider a sequence (vy)q of
solutions of equations like

Agvy + Hovy = vgafl ,
where H, — Hso in C and p, — 2% in (2,2*]. Then,
(BR1) (Li-Zhu, Schoen) If n =3 and A, + Hy has positive mass,
then, up to passing to a subsequence, the v, 's converge in C?,

(BR2) (Druet, Druet-H.) If n > 4 and Hy < ﬁsg in M, then,

up to passing to a subsequence, the v,'s converge in C2.

Now we come back to energy arguments. We let (u, ), be a
blowing-up sequence of solutions of equations like (KE,). We
assume that Sg > 0. By the boundedness lemma 2, (uq)q is
bounded in H! and thus is a Palais-Smale sequence for (/y)q. It

E-Hebey 2017



follows from the background theorem we stated a few slides above
that

k
K% = a, + ba/ Voo Pdvg + b Y 2K (P=D 52 4 o(1) |
M i=1

where 5;7/2 = lima—s 100 [[VBL ||7,. Thus
KU™ = ab [ [Vun vy + bR 26,

where Gy > kS™2. Let Xy = K% Then
Xo=a+ b/ |V too|?dvg + bCo XS .
M

We define f : Rt — R by
f(X) = bkS"2X"0 — X + 2.

By the above equation, since Cy > kS"/2 there holds that
f(Xo) < 0. First we assume that n > d.. This assumption together
with the assumption that 6y < 2 if n = 3, implies that n > 4.
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We define h L
Ho = -2 and v, = Ko " 20, ,

Ka

where K, is as before. Then,
Agvy + Hovy = v,f“*l )

By (BR2) above, since the v,'s blow up, there holds that there
need to exist xg € M such that
h(Xo) n—2
> .
K = a(n—1)¢0)

Then,
X, < Xp < Coo

where X, is the smallest X > 0 such that f(X) <0and C >0 is
as in the theorem. If n = d, then bkS™2 < 1 and ko = 1, and we
get that f/(x) < 0 for all x. In particular, f'(a) < 0. If n > d,, then
by the inequality of Theorem 2,
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f'(a) = bkS"2a0 ks — 1

< <F”° — 1)50_1 -1
Ko

<0.

There also holds that f(t) > 0 for t € [0, a]. Obviously f is convex
in RT. Then
f(X.) > f(a) + f'(a) (Xs — a)

and since f (X,) = 0, we get that

a+ _f,c(rz) < X, .

Noting that 0 < —f’(a) < 1, and since (see above) X, < C'/%,
a+ bkS"/2a" < cHh

This settles the n > d. case.



Now we assume that n < d.. Then ko < 1. Let pg = 1/kg and
g : RT™ — R be the function given by

g(X) = XP — bkS"?X — a

There holds that g (K§§/9°) > 0, while g is decreasing up to X
and increasing after X5, where

1/(po—1)
n/2
e (2
Po

In particular, since g(0) < 0, Xp < Kc'fo"/eo. Obviously, Ay + & is

coercive if Ay + % is coercive. Indeed, Ko, > a%, and thus

é: =%, where 0 < g9 < 1. Then,

h h
Ag+7m:50 (Ag+aeo>+(1—go)Ag

and the coercivity of Ag + K follows from the coercivity of
Ag + a9o' By (BR1) and (BR2) above, there need to be one
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X0 € M s.t. h(xp) > KsoAg(x0). Then K < C, where C > 0 is as
in the theorem. In particular, g (C”O/go) > 0. Thus

C1/90 —a> bksn/2cffo/90 7

and this settles the n < d. case. Theorem 3 is proved. &
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9. Proof of Theorem 4.

The proof is based on the following (difficult blow-up) results from
the stability theory for nonlinear critical elliptic equations : consider
a sequence (v, )q of solutions of equations like

2*—1
Agvy + Hova = v, ,

where H, — Hs in CL. Suppose the v,'s are bounded in H1.
Then,

(BR3) (Druet Druet-H., Druet-H.-Robert) If n # 6 and

Hy # 4 5 at all pomts in M, then, up to passing to a
subsequence, the v, 's converge in C?,
(BR4) (Druet) If n=4,5 and Hy # 4(%}1)5&, at all points in M,
then the sole possible weak limit in H' of the v, is the zero

function.

Now we can proceed as follows. We let (uy)q be a blowing-up
sequence of solutions of our equation. We define
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~ (n=2)
Ho = 4(n— 1)K,

where Ko = (a+ b [, ]Vua\zdvg)eo. Then,

1
T 5% _o
Se and vo =Ko ¥ Uy,

*__
Agvy + Hovy = VO% L

Since Sz > 0 and n > 4 the u,’s are bounded in H!. By energy
arguments, noting that ¢; = 1 since we are blocked on the critical
equation, and that S; = S since we are talking about positive
solutions,

k
KM% — a4 b/ [VusoPdvg + b " K2/ =2572 4 o(1) .
M i=1
By (BR3) and (BR4) above there holds that us, = 0 and we must
have that K, = 1. Then, by passing to the limit,

1=a+ bkS"? |

and this proves the theorem. O



Thank you for your attention !
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