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(Université de Cergy-Pontoise)

Lectures at the Riemann center at
Varese, at the SNS Pise, at Paris 13

and at the university of Nice.

June 2017

23 novembre 2017

E-Hebey 2017



1. The Kirchhoff equations.

The Kirchhoff equation goes back to Kirchhoff in 1883.
It was proposed as an extension of the classical D’Alembert’s
wave equation for the vibration of elastic strings. The equation
is one dimensional, time dependent, and it was written as

ρ
∂2u

∂t2
−
(
P0

h
+

E

2L

∫ L

0
|∂u
∂x
|2dx

)
∂2u

∂x2
= 0 ,

where L is the length of the string, h is the area of cross-section,
E is the young modulus (elastic modulus) of the material, ρ is the
mass density, and P0 is the initial tension. Almost one century
later, Jacques Louis Lions returned to the equation and proposed
an abstract framework for the general Kirchhoff equation in higher
dimension with external force term. Lions equation was written as

∂2u

∂t2
+
(
a + b

∫
Ω
|∇u|2dx

)
∆u = f (x , u)

where ∆ = −
∑ ∂2

∂x2
i

is the Laplace-Beltrami (Euclidean) Laplacian.
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Let (Mn, g) be a closed Riemannian n-manifold, n ≥ 3. Let
a, b, θ0 > 0 be positive real numbers, and h : M → R be a
C 1-function in M. The Kirchhoff equation with power that we
investigate (following a question by M. Struwe) is written as(

a + b

∫
M
|∇u|2dvg

)θ0

∆gu + hu = up−1 , (KE )

where ∆g = −divg∇ is the Laplace-Beltrami operator,
2 < p ≤ 2?, 2? = 2n

n−2 is the critical Sobolev exponent, and we
require that u ≥ 0 in M. As usual : the equation is subcritical if
p < 2? and critical if p = 2?.

Goal : investigate existence and compactness of the equation.

Note : compactness is investigated through the Palais-Smale
property and/or the notion of stability.
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3. The notion of stability.

Stability is associated to the notion of perturbations of (KE ).

Definition (of a perturbation of (KE ))

A perturbation of (KE ) is any family (KEα)α of equations which
are written as(

aα + bα

∫
M
|∇uα|2dvg

)θ0

∆guα + hαuα = upα−1
α , (KEα)

where (aα)α and (bα)α are arbitrary sequences of positive real
numbers converging to a and b, (hα)α is an arbitrary sequence of
C 1-functions converging C 1 to h and (pα)α is an arbitrary
sequence of powers converging to p in (2, 2?].

An obvious remark is that (KE ) is a perturbation of itself (take
aα = a, bα = b, hα = h and pα = p for all α).
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Definition (Bounded Stability)

Equation (KE ) is said to be bounded and stable (or stable for
short) if for any sequences (aα)α and (bα)α of positive real
numbers converging to a and b, any sequence (hα)α of
C 1-functions converging C 1 to h, any sequence (pα)α of powers
converging to p in (2, 2?], and any sequence (uα)α of nonnegative
solutions of (KEα) there holds that, up to passing to a
subsequence, (uα)α converges strongly in C 2 to a nonnegative
solution of (KE ).

Bounded stability means that whatever the perturbations (KEα) of
our equation (KE ) we consider, whatever the sequence (uα)α of
solutions of (KEα) we consider, the sequence (uα)α converges
strongly (up to a subsequence) in C 2 (to a solution of our original
equation).

Since (KE ) is a perturbation of itself, stability ⇒ compactness .
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3. The subcritical case.

The kind of typical results we aim to prove is the following.

Theorem 1 (Subcritical case, H. 2016)

Let p ∈ (2, 2?). Assume ∆g + h
aθ0

is coercive and 2(1 + θ0) 6= p.
Then :

(1) [Existence] (KE ) always possesses a C 2-positive solution.

(2) [Stability] For any perturbation (KEα)α of (KE ) and any
sequence (uα)α of solutions of (KEα)α there holds that, up to
passing to a subsequence, (uα)α converges strongly in C 2 to a
nonnegative solution of (KE ).

As a direct consequence of the stability part in the theorem (and
the previous remark), assuming that ∆g + h

aθ0
is coercive :

Corollary

(KE ) is compact for any p ∈ (2, 2?) such that 2(1 + θ0) 6= p.
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Proof of Theorem 1 : (1) [Existence] The problem has a
variational structure. The proof follows from the standard Brézis
and Nirenberg mountain pass approach, based on the
mountain-pass lemma by Ambrosetti and Rabinowitz. The
primitive functional for (KE ) is

Ip(u) =
1

2(1 + θ0)b

(
a + b

∫
M
|∇u|2dvg

)1+θ0

+
1

2

∫
M
hu2dvg −

1

p

∫
M

(u+)pdvg ,

where u ∈ H1, and H1 is the Sobolev space of functions in L2

with one derivative in L2. Since M has no boundary, constant
functions can be used to go down the mountain, and we recover a
mountain pass structure. Subcriticality gives the required
compactness to have the argument work.
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Proof of Theorem 1 continued : (2) [Stability] We prove it in 3
(by now) simple steps. We let (uα)α be arbitrary as in the theorem,
solution of (KEα)α. We define

Kα =

(
aα + bα

∫
M
|∇uα|2dvg

)θ0

,

Hα =
hα
Kα

, vα = K
− 1

pα−2
α uα .

There holds that

∆gvα + Hαvα = vpα−1
α .

We branch on the Gidas-Spruck compactness argument. We prove
that :

Step 1 : (easy) We cannot have simultaneously that
‖∇uα‖L2 → +∞ as α→ +∞ and ‖vα‖L∞ = O(1).

Step 2 : (very easy) (uα)α converges in C 2 if ‖vα‖L∞ = O(1).

Step 3 : (the Gidas-Spruck argument) We cannot have that
‖vα‖L∞ → +∞ as α→ +∞.
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4. The critical dimension in the critical case p = 2?.

A critical dimension appears in the critical case of our equations. It
acts as a threshold in dimensions in our results.

Definition (Critical dimension, H.2016)

We let dc > 0 be given by

dc =
2(1 + θ0)

θ0
,

and we refer to dc as the fractional critical dimension of (KE )
when p = 2?.

It might be that dc 6∈ N. There holds that dc ∈ N iff
θ0 = 2, 1, 2

3 ,
1
2 ,

2
5 ,

1
3 , . . . (i.e. θ0 = 2

m−2 for m ∈ N, m ≥ 3.)

In what follows (KEc) refers to (KE ) with p = 2?.
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5. The H1-theory and the Palais-Smale property.

Let (aα)α and (bα)α be sequences of positive real numbers
converging to a and b, (hα)α be a sequence in C 1 converging C 1

to h and (pα)α be a sequence converging to 2? in (2, 2?]. For
u ∈ H1, and α ∈ N, we let

Iα(u) =
1

2(1 + θ0)bα

(
aα + bα

∫
M
|∇u|2dvg

)1+θ0

+
1

2

∫
M
hαu

2dvg −
1

pα

∫
M
|u|pαdvg .

Nonnegative critical points of Iα are solutions of (KEα).

A sequence (uα)α in H1 is said to be a Palais-Smale sequence for
the functional family (Iα)α if (Iα(uα))α is bounded and I ′α(uα)→ 0
in (H1)′ as α→ +∞.

The functional family (Iα)α is said to satisfy the Palais-Smale
property if for any Palais-Smale sequence (uα)α for (Iα)α there
holds that, up to a subsequence, (uα)α converges (strongly) in H1.
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Background Theorem 1 (Struwe’s H1-theory)

Let (uα)α be a H1-bounded Palais-Smale sequence for (Iα)α. Up to
a subsequence, either (uα)α converges strongly in H1 or

uα = u∞ +
k∑

i=1

ciK
1/(pα−2)
α Biα +Rα

in M for some k ∈ N?, where u∞ : M → R is the weak limit in H1

(or the strong limit in L2) of the uα’s, Kα is given by

Kα =

(
aα + bα

∫
M
|∇uα|2dvg

)θ0

,

Rα → 0 in H1 as α→ +∞, the (Biα)α’s are bubbles, and the ci ’s
are real numbers in [1,+∞) which all equal 1 in the purely critical
case for which pα = 2? for all α.
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In the arbitrary sign case, bubbles are constructed by rescaling
solutions in Rn of the fundamental equation ∆u = |u|2?−2u. In the
nonnegative case, thanks to Caffarelli-Gidas-Spruck, an explicit
expression for the Biα’s can be given and there holds that

Biα(x) =

 µi ,α

µ2
i ,α +

dg (xi,α,x)2

n(n−2)

 n−2
2

for all x ∈ M and all α, where (xi ,α)α is a converging sequence of
points in M and (µi ,α)α is a sequence of positive real numbers
converging to 0 as α→ +∞. Bubbles (Bα)α satisfy that

Bα → 0 in L2 as α→ +∞ ,

‖Bα‖H1 = O(1) , and,

‖Bα‖2
H1 ≥ Sn/2 + o(1) for all α ,

where S is the sharp constant in the Sobolev inequality. In the case
of positive bubbles, equality holds in the last equation.
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Boundedness Lemma 1 (H. 2016)

Whatever (Iα)α is,

(i) Palais-Smale sequences of nonnegative functions for (Iα)α are
bounded in H1 either when n 6= dc , or when n = dc and
bS (1+θ0)/θ0 > 1,

(ii) Palais-Smale sequences of functions of arbitrary sign for
(Iα)α are bounded in H1 if ∆g + h

aθ0
is coercive and n 6= dc ,

(iii) In the purely critical case, where pα = 2? for all α,
Palais-Smale sequences of functions of arbitrary sign for (Iα)α are
bounded in H1 if ∆g + h

aθ0
is coercive, n = dc and b � 1,

where dc the critical fractional dimension and S is the sharp
Sobolev constant.

⇒ If θ0 6∈
{

2, 1, 2
3 ,

1
2 ,

2
5 ,

1
3 , . . .

}
and ∆g + h

aθ0
is coercive,

then Palais-Smale sequences for (Iα)α are bounded in H1.
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Proof of Lemma 1 : Lemma 1 follows from relatively easy and
standard manipulations starting from the equations (somehow in
the spirit of the Brézis-Nirenberg manipulations), using the
Poincaré and Sobolev inequalities. ♦

Theorem 2 (Bubble control 1, H. 2016)

Let (Iα)α be an arbitrary family of functionals as above. Let (uα)α
be a H1-bounded Palais-Smale sequences for (Iα)α. Suppose (uα)α
blows-up with k bubbles. Then bkSn/2 < 1 if n = dc and

aκ0−1bk ≤ (κ0 − 1)κ0−1

κκ0
0 Sn/2

(?)

if n > dc , where dc is the critical fractional dimension, S is the
sharp Sobolev constant and κ0 = 2θ0

2?−2 .

Proof of Theorem 2 : This is still a theorem we can prove with
(relatively) easy arguments. Key point is the energy estimate
associated to Struwe’s decomposition (background Theorem 1). ♦
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Corollary

If ∆g + h
aθ0

is coercive, n > dc and

aκ0−1b >
(κ0 − 1)κ0−1

κκ0
0 Sn/2

,

then any family of functionals (Iα)α as above satisfies the
Palais-Smale property.

Proof of the Corollary : By Lemma 1, since ∆g + h
aθ0

is coercive

and n 6= dc , Palais-Smale sequences for (Iα)α are H1-bounded.
Then, up to passing to a subsequence, any Palais-Smale sequence
can be decomposed using Struwe’s decomposition (background
Theorem 1). Assuming the inequality in the corollary, and since
n > dc , it follows from Theorem 2 that k = 0 (zero bubble case) in
these decompositions. In other words, up to passing to a
subsequence, Palais-Smale sequences for (Iα)α converge strongly in
H1. This ends the proof of the corollary. ♦
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6. The bounded stability approach.

Here again we need a boundedness (finite energy) lemma.

Boundedness Lemma 2 (H. 2016)

For any perturbation (KEα) of (KEc), and any sequence (uα)α of
nonnegative solutions of (KEα), the sequence (uα)α is bounded in
H1 in each of the following cases :

(i) n = 3 and θ0 < 2,

(ii) n > dc ,

(iii) n = dc and bSn/2 > 1,

(iv) n ≥ 4 and Sg > 0,

where dc is the critical fractional dimension, S is the sharp Sobolev
constant and Sg is the scalar curvature of g .
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Proof of Lemma 2 : (ii) and (iii) are proved as in Lemma 1. We
prove (i) and (iv) with (much) more advanced arguments based on
the C 0-theory and the bounded stability theory for the blow-up of
nonlinear critical elliptic equations (both in the n = 3 and n ≥ 4
cases). ♦

As a remark, when (i), (ii), (iii) or (iv) apply, then any sequence
(uα)α of nonnegative solutions of (KEα) is a Palais-Smale sequence
for (Iα)α, and what has been said in the previous section applies.

We can think of bounded stability as sort of a Palais-Smale
property but restricted to sequences of solutions of equations like
(KEα). Of course one expects to get more precise results.

As in the Palais-Smale case we can ask for a bubble control in case
of blow-up. We let kmax be the maximal number of bubbles that
blowing-up sequences of solutions of perturbed equations (KEα)
associated to a given equation (KEc) can have. Possibly
kmax = +∞, in particular if there is one sequence (KEα) which
possesses a unbounded sequence in H1 of solutions.
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According to the above remarks, and to Theorem 2, we know that
if n = dc , and either Sg > 0 (and n ≥ 4) or bSn/2 > 1, then

bkmaxS
n/2 ≤ 1 . (H1Ineq1)

And we also know that if n > dc , then

aκ0−1bkmax ≤
(κ0 − 1)κ0−1

κκ0
0 Sn/2

, (H1Ineq2)

where κ0 = 2θ0
2?−2 . Indeed, in these cases, any sequence (uα)α of

solutions of (KEα) is bounded in H1 by Lemma 2. Then it is a
Palais-Smale sequence for (Iα)α. In particular the bubble control
theorem of the preceding section applies. And we get the above
two equations.

More can be said. This is the subject of the following theorem. We
recall that by the positive mass theorem (Schoen-Yau, Witten)
there always exists a positive function Λg in M such that ∆g + Λg

has positive mass on any 3-manifold of positive scalar curvature.
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Theorem 3 (Bubble control 2, H. 2016)

When n = 3 we assume that θ0 < 2 and that ∆g + h
aθ0

is coercive.
We let dc be the critical fractional dimension. We assume that
Sg > 0 in M. If n ≥ dc , there holds that

kmax ≤
(
C 1/θ0 − a

)+

bSn/2aκ0
, (1)

where C > 0 is such that h ≤ CΛg in M and Λg = n−2
4(n−1)Sg . If

n < dc , there holds that

kmax ≤
(
C 1/θ0 − a

)+

bSn/2Cκ0/θ0
, (2)

where C > 0 is such that h ≤ CΛg in M and Λg > 0 is such that
∆g + Λg has positive mass when n = 3, or Λg = n−2

4(n−1)Sg when
n ≥ 4.
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Together with Theorem 3 we do get stability result by assuming
inequalities which imply that kmax = 0. Consider the three
following inequalities :

(Ineq.1) aκ0−1b >
(κ0 − 1)κ0−1

κκ0
0 Sn/2

,

(Ineq.2) h <
(n − 2)aθ0

4(n − 1)

(
1 + bSn/2aκ0−1

)θ0

Sg ,

(Ineq.3) h <

(
a +

(
bSn/2κ0

) 1
1−κ0

)θ0

Λg ,

where Λg > 0 is such that ∆g + Λg has positive mass when n = 3,
or Λg = n−2

4(n−1)Sg when n ≥ 4, and where κ0 = 2θ0
2?−2 .

(Ineq.2) and (Ineq.3) are like

h ≤ C (n, a, b, θ0)Λg

(Aubin’s type inequalities), where Λg > 0 is such that ∆g + Λg has
positive mass when n = 3 and Λg = n−2

4(n−1)Sg when n ≥ 4.
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Corollary 1 (Bounded stability, H. 2016)

Let (Mn, g) be a closed Riemannian n-manifold, a, b, θ0 > 0 be
positive real numbers, and h : M → R be a C 1-function in M.
When n = 3 we assume that θ0 < 2 and that ∆g + h

aθ0
is coercive.

Equation (KEc) is bounded and stable in each of the following
cases : if n = dc and bSn/2 > 1, or if n > dc and (Ineq.1) holds
true, or if Sg > 0, n ≥ dc and (Ineq.2) holds true, or if Sg > 0,
n < dc and (Ineq.3) holds true.

Another corollary to the theorem concerns existence.

Corollary 2 (Existence, H. 2016)

Let (Mn, g) be a closed Riemannian n-manifold, a, b, θ0 > 0 be
positive real numbers, and h : M → R be a C 1-function in M. We
assume that θ0 < 2 when n = 3, and also assume in all dimensions
that ∆g + h

aθ0
is coercive. Then (KEc) possesses a C 2-positive

solution in each of the cases listed in Corollary 1.
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Proof of Corollary 1 : (Ineq.1), (Ineq.2) and (Ineq.3) imply that
kmax = 0, and thus that for any perturbed sequence of equation
(KEα) and any sequence (uα)α of solutions of (KEα), the uα’s do
not blow-up. Thus, up to a subsequence, they converge strongly in
H1, and by regularity theory they converge in C 2. ♦

Proof of Corollary 2 : existence follows from the existence of a
solution in the subcritical case (Theorem 1) together with the
stability from Theorem 3 (Corollary 1 above). The subcritical
solution converges to a solution of the critical equation. ♦

Theorem 4 (A special case, H.2016)

Let (Mn, g) be a closed Riemannian n-manifold of positive scalar
curvature and dimension n = 4, 5. Let a, b, θ0 > 0 be positive real
numbers. Let (uα)α be a blowing-up sequence of solutions of the
Kirchhoff equation (KEc) with h ≡ n−2

4(n−1)Sg . Let k be the number
of bubble involved in the Struwe’s decomposition of the uα’s. Then
1−a
b = kSn/2. In particular, (KE ) is compact if 1−a

b 6∈ N?Sn/2.
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7. The opposite question. Blowing-up examples.

On the opposite side we want to produce examples of solutions
which blow up. The following result is a direct consequence of
previous works by Pistoia and Vétois.

Proposition (Pistoia-Vétois)

Let (Mn, g) be a closed Riemannian n-manifold of nonpositive
scalar curvature. Assume that n = dc and θ0 6= 2, where dc is the
critical fractional dimension. Then there exist h : M → R+? a
positive C 1-function, a, b > 0 with bSn/2 = 1, sequences (aα)α and
(bα)α of positive real numbers converging to a and b, a sequence
(hα)α of positive C 1-function converging to h, a sequence (pα)α of
powers converging to 2? in [2, 2?] and a sequence (uα)α of
solutions of (KEα) such that

∫
M |∇uα|

2dvg → +∞ as α→ +∞,
namely such that (uα)α is not bounded in H1.

Such constructions are not possible when Sg > 0 (and n ≥ 4) or
when n > dc . In the same spirit : Del Pino, Esposito, Ghimenti,
Micheletti, Pacard, Pistoia, Robert, Vaira, Vétois, Wei.
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8. Proof of Theorem 3.

The proof is based on the energy estimate associated to the
background theorem we discussed a few slides ago, and on the
following (difficult blow-up) results from the stability theory for
nonlinear critical elliptic equations. Consider a sequence (vα)α of
solutions of equations like

∆gvα + Hαvα = vpα−1
α ,

where Hα → H∞ in C 1 and pα → 2? in (2, 2?]. Then,

(BR1) (Li-Zhu, Schoen) If n = 3 and ∆g + H∞ has positive mass,
then, up to passing to a subsequence, the vα’s converge in C 2,

(BR2) (Druet, Druet-H.) If n ≥ 4 and H∞ < n−2
4(n−1)Sg in M, then,

up to passing to a subsequence, the vα’s converge in C 2.

Now we come back to energy arguments. We let (uα)α be a
blowing-up sequence of solutions of equations like (KEα). We
assume that Sg > 0. By the boundedness lemma 2, (uα)α is
bounded in H1 and thus is a Palais-Smale sequence for (Iα)α. It
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follows from the background theorem we stated a few slides above
that

K 1/θ0
α = aα + bα

∫
M
|∇u∞|2dvg + bα

k∑
i=1

c2
i K

2/(pα−2)
α S

n/2
i + o(1) ,

where S
n/2
i = limα→+∞ ‖∇Biα‖2

L2 . Thus

K 1/θ0
∞ = a + b

∫
M
|∇u∞|2dvg + bK 2/(2?−2)

∞ C0 ,

where C0 ≥ kSn/2. Let X0 = K
1/θ0
∞ . Then

X0 = a + b

∫
M
|∇u∞|2dvg + bC0X

κ0
0 .

We define f : R+ → R by

f (X ) = bkSn/2Xκ0 − X + a .

By the above equation, since C0 ≥ kSn/2, there holds that
f (X0) ≤ 0. First we assume that n ≥ dc . This assumption together
with the assumption that θ0 < 2 if n = 3, implies that n ≥ 4.
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We define

Hα =
hα
Kα

and vα = K
− 1

pα−2
α uα ,

where Kα is as before. Then,

∆gvα + Hαvα = vpα−1
α .

By (BR2) above, since the vα’s blow up, there holds that there
need to exist x0 ∈ M such that

h(x0)

K∞
≥ n − 2

4(n − 1)
Sg (x0) .

Then,
X? ≤ X0 ≤ C 1/θ0 ,

where X? is the smallest X ≥ 0 such that f (X ) ≤ 0 and C > 0 is
as in the theorem. If n = dc , then bkSn/2 < 1 and κ0 = 1, and we
get that f ′(x) < 0 for all x . In particular, f ′(a) < 0. If n > dc , then
by the inequality of Theorem 2,
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f ′(a) = bkSn/2aκ0−1κ0 − 1

≤
(
κ0 − 1

κ0

)κ0−1

− 1

< 0 .

There also holds that f (t) > 0 for t ∈ [0, a]. Obviously f is convex
in R+. Then

f (X?) ≥ f (a) + f ′(a) (X? − a)

and since f (X?) = 0, we get that

a +
f (a)

−f ′(a)
≤ X? .

Noting that 0 < −f ′(a) < 1, and since (see above) X? ≤ C 1/θ0 ,

a + bkSn/2aκ0 ≤ C 1/θ0 .

This settles the n ≥ dc case.
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Now we assume that n < dc . Then κ0 < 1. Let p0 = 1/κ0 and
g : R+ → R be the function given by

g(X ) = X p0 − bkSn/2X − a .

There holds that g
(
K
κ0/θ0
∞

)
≥ 0, while g is decreasing up to X2

and increasing after X2, where

X2 =

(
bkSn/2

p0

)1/(p0−1)

.

In particular, since g(0) < 0, X2 ≤ K
κ0/θ0
∞ . Obviously, ∆g + h

K∞
is

coercive if ∆g + h
aθ0

is coercive. Indeed, K∞ ≥ aθ0 , and thus
1

K∞
= ε0

aθ0
, where 0 < ε0 ≤ 1. Then,

∆g +
h

K∞
= ε0

(
∆g +

h

aθ0

)
+ (1− ε0)∆g

and the coercivity of ∆g + h
K∞

follows from the coercivity of

∆g + h
aθ0

. By (BR1) and (BR2) above, there need to be one
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x0 ∈ M s.t. h(x0) ≥ K∞Λg (x0). Then K∞ ≤ C , where C > 0 is as
in the theorem. In particular, g

(
Cκ0/θ0

)
≥ 0. Thus

C 1/θ0 − a ≥ bkSn/2Cκ0/θ0 ,

and this settles the n < dc case. Theorem 3 is proved. ♦
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9. Proof of Theorem 4.

The proof is based on the following (difficult blow-up) results from
the stability theory for nonlinear critical elliptic equations : consider
a sequence (vα)α of solutions of equations like

∆gvα + Hαvα = v2?−1
α ,

where Hα → H∞ in C 1. Suppose the vα’s are bounded in H1.
Then,

(BR3) (Druet, Druet-H., Druet-H.-Robert) If n 6= 6 and
H∞ 6= n−2

4(n−1)Sg at all points in M, then, up to passing to a

subsequence, the vα’s converge in C 2,

(BR4) (Druet) If n = 4, 5 and H∞ 6= n−2
4(n−1)Sg at all points in M,

then the sole possible weak limit in H1 of the vα is the zero
function.

Now we can proceed as follows. We let (uα)α be a blowing-up
sequence of solutions of our equation. We define

E-Hebey 2017



Hα =
(n − 2)

4(n − 1)Kα
Sg and vα = K

− 1
2?−2

α uα ,

where Kα =
(
a + b

∫
M |∇uα|

2dvg
)θ0 . Then,

∆gvα + Hαvα = v2?−1
α .

Since Sg > 0 and n ≥ 4 the uα’s are bounded in H1. By energy
arguments, noting that ci = 1 since we are blocked on the critical
equation, and that Si = S since we are talking about positive
solutions,

K 1/θ0
α = a + b

∫
M
|∇u∞|2dvg + b

k∑
i=1

K 2/(2?−2)
α Sn/2 + o(1) .

By (BR3) and (BR4) above there holds that u∞ ≡ 0 and we must
have that K∞ = 1. Then, by passing to the limit,

1 = a + bkSn/2 ,

and this proves the theorem. ♦
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Thank you for your attention !
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