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I. The Kirchhoff equations

The Kirchhoff equation goes back to Kirchhoff in 1883.
It was proposed as an extension of the classical D’Alembert’s
wave equation for the vibration of elastic strings. The equation
is one dimensional, time dependent, and it was written as

ρ
∂2u

∂t2
−
(
P0

h
+

E

2L

∫ L

0
|∂u
∂x
|2dx

)
∂2u

∂x2
= 0 ,

where L is the length of the string, h is the area of cross-section,
E is the young modulus (elastic modulus) of the material, ρ is the
mass density, and P0 is the initial tension. Almost one century
later, Jacques Louis Lions returned to the equation and proposed
an abstract framework for the general Kirchhoff equation in higher
dimension with external force term. Lions equation was written as

∂2u

∂t2
+
(
a + b

∫
Ω
|∇u|2dx

)
∆u = f (x , u)

where ∆ = −
∑ ∂2

∂x2
i

is the Laplace-Beltrami (Euclidean) Laplacian.
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Let (Mn, g) be a closed Riemannian manifold, n ≥ 3. Let p ≥ 1
integer, a, b > 0 positive real numbers, A : M → Mp

s (R) be a
C 1-map from M to the set of symmetric p × p matrices with real
entries. Consider the following Kirchhoff system of p equations :

(
a + b

p∑
j=1

∫
M
|∇uj |2dvg

)
∆gui +

p∑
j=1

Aijuj = |U|2
?−2 ui (S)

for all i = 1, . . . , p, ∆g = −divg∇ is the Laplace-Beltrami
operator, the Aij ’s are the components of A, U = (u1, . . . , up),

|U| =

√√√√ p∑
j=1

u2
j ,

and we require that ui ≥ 0 in M for all i . The system is strongly
coupled. Here 2? = 2n

n−2 is the critical Sobolev exponent.
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Example 1 : When p = 1, we are discussing the single equation(
a + b

∫
M
|∇u|2dvg

)
∆gu + Au = u2?−1 ,

where A : M → R is a function.

Example 2 : When p = 2, we are discussing the system :
(
a + b

∑2
i=1

∫
M |∇ui |

2dvg
)

∆gu1 + A11u1 + A12u2 = |U|2
?−2 u1(

a + b
∑2

i=1

∫
M |∇ui |

2dvg
)

∆gu2 + A21u1 + A22u2 = |U|2
?−2 u2 ,

where U = (u1, u2), the norm |U|2 = u2
1 + u2

2 , and the map
A : M → M2

s (R) is the matrix

A =

(
A11 A12

A21 A22

)
with A12 = A21. Same story for p = 3, 4, . . . .

Rk : (S) is nonlocal by K (U) = a + b
∑p

i=1

∫
M |∇ui |

2dvg which
stands in front of the Laplacians in the equations.
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II. The critical Euclidean p-map equation

The vector valued Euclidean critical equation in Rn we consider is

∆ui = |U|2?−2ui (E )

for all i = 1, . . . , p, where ∆ = −
∑n

i=1 ∂
2
i , and |U|2 =

∑
u2
i .

Theorem A : (Druet-H.-Vétois, 2010).

Let p ≥ 1 and U be a nonnegative nontrivial C 2-solution of (E ).
Then there exist a ∈ Rn, µ > 0, and Λ ∈ Sp−1

+ , such that

U(x) =

 µ

µ2 + |x−a|2
n(n−2)

(n−2)/2

Λ

for all x ∈ Rn, where Sp−1
+ consists of the elements (Λ1, . . . ,Λp) in

Sp−1, the unit sphere in Rp, which are such that Λi ≥ 0 for all i .

When p = 1 this is the Caffarelli-Gidas-Spruck theorem. (E ) has
precisely a “1 + n + (p − 1)”-family of nonnegative solutions.
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Definition of a bubble : A bubble in the vector valued setting is
a sequence (Bα)α of p-maps, Bα : M → Rp, which are given by

Bα(x) =

 µα

µ2
α +

dg (xα,x)2

n(n−2)

 n−2
2

Λ

for all x ∈ M and all α, where (xα)α is a converging sequence of
points in M, (µα)α is a sequence of positive real numbers
converging to 0, and Λ ∈ Sp−1

+ .

(|Bα| as α→ +∞)
We get a L∞-convergence to zero outside the limit of the xα’s, but
the L2-norm of the gradient is preserved. A bubble might not affect
directly some lines in the equation, e.g. when Λ =

(
1√
2
, 0, 1√

2

)
.
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III. The 3-dimensional Kirchhoff system.

Let (Mn, g) be a closed Riemannian n-dimensional manifold,
n = 3, p ≥ 1 be an integer, (aα)α and (bα)α be two sequences of
positive real numbers, and (Aα)α be a sequence of C 1-maps
Aα : M → Mp

s (R). Consider

(
aα + bα

p∑
j=1

∫
M
|∇uj |2dvg

)
∆gui +

p∑
j=1

Aαijuj = |U|2
?−2 ui (Sα)

for all i = 1, . . . , p, where Aα = (Aαij )i ,j=1,...,p. A sequence (Uα)α is
said to be a sequence of nonnegative solutions of (Sα) if the
components of the Uα’s are nonnegative and solve the α-equation
(Sα) for any α.

We always assume in the sequel that the aα’s and bα’s converge in
R, and that the Aα’s converge in C 1. We regard such (Sα)’s as
perturbations of (S).
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The (Sα)’s have a variational structure. Let H1 be the Sobolev
space of p-maps with components in L2 with one derivative in L2.
The (Sα)’s come with Iα : H1 → R given by

Iα(U) =
aα
2

p∑
i=1

∫
M
|∇ui |2dvg +

bα
4

(
p∑

i=1

∫
M
|∇ui |2dvg

)2

+
1

2

p∑
i ,j=1

∫
M
Aαijuiujdvg −

1

2?

∫
M
|U+|2?dvg ,

where U+ = (u+
1 , . . . , u

+
p ). Let (Uα)α be a sequence of p-maps in

H1. The sequence (Uα)α is a Palais-Smale sequence for (Iα)α if :

(i) the Iα(Uα)’s are bounded,
(ii) and I ′α(Uα)→ 0 in (H1)′ as α→ +∞.

Palais-Smale sequences are bounded in H1 (Brézis-Nirenberg).
Conversely, any sequence of solutions of (Sα) which is bounded in
H1 is a Palais-Smale sequence for (Iα)α.
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The H1-theory for the blow-up (Struwe, 84) applies to
Palais-Smale sequences : for any PS-sequence (Uα)α of
nonnegative p-maps, up to passing to a subsequence,

Uα = U∞ +
k∑

i=1

K
1

2?−2
α Biα +Rα (H1Dec) ,

where, U∞ is a p-map in H1, k is an integer, the (Biα)α’s are
bubbles, the Rα’s converge strongly to 0 in H1, and the Kα’s,
which come from the nonlocal aspects of the equations, are given
by

Kα = aα + bα

p∑
i=1

∫
M
|∇ui ,α|2dvg ,

the ui ,α’s being the components of the Uα’s. The sequence (Uα)α
blows up if k ≥ 1. Define

N (Uα) = max
{
k in (H1Dec) for subsequences of (Uα)α

}
,

the maximal number of bubbles we can have in H1-dec. of
subsequences of the Uα’s.
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Notations : • Let S be the sharp constant in the Euclidean
Sobolev inequality S‖u‖2

L2? ≤ ‖∇u‖2
L2 ,

S =
n(n − 2)ω

2/n
n

4
,

where ωn is the volume of Sn (S = 3
4ω

2/3
3 when n = 3).

• An operator like ∆g + A is coercive if : ∃C > 0,

‖U‖2
H1 ≤ C

∫
M

(
|∇U|2 + A(U,U)

)
dvg

for all U : M → Rp in H1.

• A matrix A is cooperative if its of diagonal coefficients are
nonnegative (Aij ≥ 0 for all i 6= j).

• Given Λg > 0, the Green’s function of ∆g + Λg has a singular
part in “1/r” plus a regular part. It has positive mass if its regular
part is positive on the diagonal of M ×M. By the positive mass
theorem of Schoen-Yau and Witten, there is such a Λg on any
closed 3-manifold with positive Yamabe invariant.
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Theorem 1 : (H.-Thizy, 2014)

Let (M3, g) be a closed Riemannian 3-manifold, p ≥ 1 be an
integer, a, b > 0 be positive real numbers, and A : M → Mp

s (R) be
a C 1-map. For any sequences (aα)α and (bα)α of positive real
numbers converging to a and b, any sequence (Aα)α of C 1-maps
Aα : M → Mp

s (R) converging C 1 to A, and any sequence (Uα)α of
nonnegative solutions of (Sα), there holds that ‖Uα‖H1 = O(1).
Moreover, if ∆g + 1

aA is coercive, −A is cooperative, and the Uα’s
blow up, then

a + bS3/2
√
CN (Uα) ≤ C ,

where S = 3
4ω

2/3
3 is the sharp constant in the Euclidean Sobolev

inequality, N (Uα) is as above, C > 0 is such that A ≤ CΛg Idp in
M in the sense of bilinear forms, where Idp is the identity p × p
matrix, and Λg > 0 is such that ∆g + Λg has positive mass.

Rk : There are (H.-Wei, 2012) several examples of (Sα) and (S) for
which there exist Uα’s with N (Uα) ≥ 1 (and even N (Uα)� 1).
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Corollary 1 : (H.-Thizy, 2014)

Let (M3, g) be a closed Riemannian 3-manifold, and Λg > 0 be
such that ∆g + Λg has positive mass. Let p ≥ 1 be an integer,
a, b > 0 be positive real numbers, and A : M → Mp

s (R) be a
C 1-map such that ∆g + 1

aA is coercive, and −A is cooperative.
Assume that

A(x) <

(
a +

1

2
b2S3 +

1

2
bS3/2

√
4a + b2S3

)
Λg (x)Idp

for all x ∈ M, in the sense of bilinear forms, where Idp is the
identity p × p matrix. Then (S) has a nonnegative nontrivial
C 2-solution. Moreover, for any θ ∈ (0, 1), there exists C > 0 such
that ‖Uα‖C2,θ ≤ C for all sequences (aα)α and (bα)α converging
to a and b, all sequences (Aα)α of C 1-maps Aα : M → Mp

s (R)
converging C 1 to A, and all sequences (Uα)α of nonnegative
solutions of (Sα).
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Corollary 2 : (H.-Thizy, 2014)

Let (M3, g) be a closed Riemannian 3-manifold. Let p ≥ 1 be an
integer, and A ∈ Mp

s (R) be a positive definite matrix which does
not possess nonnegative nontrivial eigenvectors. Then there exists
K � 1 such that for any positive real numbers a and b satisfying
that a + b ≥ K , the Kirchhoff system (S) does not possess
nonnegative nontrivial solutions.

Corollary 2 makes sense starting with p ≥ 3. The matrix

A =
1

42

 80 22 −26
22 110 −4
−26 −4 62


is positive definite, has 1, 2, 3 as eigenvalues, and (−4, 1,−5),
(−1, 1, 1), (−2,−3, 1) as corresponding eigenvectors.

By Corollary 2, the assumption in Corollary 1 that −A should be
cooperative is necessary.
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IV. The n-dimensional Kirchhoff system, n ≥ 4.

Assume

A ≡ n − 2

4(n − 1)
Sg Idp , (?)

where Sg scalar curvature of g , and Idp identity p × p matrix.

Theorem 2 : (H.-Thizy, 2014)

Let (Mn, g) be a closed Riemannian n-manifold with positive
scalar curvature, n = 4 or 5, p ≥ 1 be an integer, a, b > 0 be
positive real numbers, and A : M → Mp

s (R) be given by the
geometric diagonal model (?). Assume that

1− a

b
6∈ Sn/2N? ,

where S is the sharp Sobolev constant. For any θ ∈ (0, 1), there
exists C > 0 s.t. ‖Uα‖C2,θ ≤ C for all (aα)α, (bα)α converging to a
and b, all (Aα)α in C 1

(
M,Mp

s (R)
)

converging C 1 to A, and all
sequences (Uα)α of nonnegative solutions of (Sα).
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More results : Let (Mn, g) be a closed Riemannian n-manifold,
n ≥ 4, p ≥ 1 be an integer, a, b > 0, and A ∈ C 1

(
M,Mp

s (R)
)

be
s.t. ∆g + 1

aA is coercive. Assume one of the following assumptions :

(1) a and b satisfy that bS
n
2 a

n−4
2 > 2

n−2

(
n−4
n−2

) n−4
2

when n ≥ 5,

and bS2 > 1 when n = 4,
(2) (positive geometries) Sg > 0 everywhere in M, and

A(x) <
(n − 2)a

4(n − 1)

(
1 + bSn/2a

n−4
2

)
Sg (x)Idp

for all x ∈ M, in the sense of bilinear forms,
(3) (nonpositive geometries) A(x) is positive definite for all

x ∈ M, Sg ≤ 0 everywhere in M, and n = 5 or n ≥ 7,

where Sg is the scalar curvature of g , and S is the sharp Sobolev
constant. Then for any θ ∈ (0, 1), there exists C > 0 such that
‖Uα‖C2,θ ≤ C for all (aα)α, (bα)α converging to a and b, all (Aα)α
in C 1

(
M,Mp

s (R)
)

converging C 1 to A, and all sequences (Uα)α of
nonnegative solutions of (Sα). + (if −A is cooperative) Existence
of nonnegative (nontrivial) solutions in cases (1) and (2).
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Corollary 3 : (H.-Thizy, 2014)

Let (Mn, g) be a closed Riemannian n-manifold, n ≥ 4. Let p ≥ 1
be an integer, and A ∈ Mp

s (R) be a positive definite matrix which
does not possess nonnegative nontrivial eigenvectors. Let β, γ > 0
be positive real numbers. Then there exists K � 1 such that for
any positive real numbers a and b satisfying that a ≥ β, b ≥ γ,

and a
n−4

2 b ≥ K , the Kirchhoff system (S) does not possess
nonnegative nontrivial solutions.

Conversely, suppose for instance that n = 4, and let v be a
solution of ∆gv + hv = v2?−1. Let a, b, A, and u be such that

b

∫
M
|∇v |2dvg < 1 ,

p∑
j=1

Aij =

(
a +

ab
∫
M |∇v |

2dvg

1− b
∫
M |∇v |2dvg

)
h ,

u =

√
a +

ab
∫
M |∇v |2dvg

1− b
∫
M |∇v |2dvg

v .

Then U =
(

1√
pu, . . . ,

1√
pu
)

solves (S).
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V. Proof of Theorem 1 (easy part).

Here n = 3. We want to prove that sequences (Uα)α of solutions
of (Sα) are bounded in H1 and that the number k of bubbles we
can have in H1-decompositions of such sequences is bounded from
above by

a + bS3/2
√
Ck ≤ C ,

where C > 0 is such that A ≤ CΛg Idp in the sense of bilinear
forms, and Λg > 0 is such that ∆g + Λg has positive mass. The
proof is typical of a 3-dimensional blow-up analysis (close to the
one originally developed by Schoen for the Yamabe equation in
3-space dimensions). Let (aα)α and (bα)α be sequences of positive
real numbers, and (Aα)α be a sequence of C 1-maps
Aα : M → Mp

s (R) such that

aα → a, bα → b as α→ +∞ ,

Aα → A in C 1 as α→ +∞ .

Also we let (Uα)α be a sequence of nonnegative nontrivial
solutions of (Sα).
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We use the 3-dimensional blow-up machinery and get that

3− dim. blow-up machinery⇒ Blow-up points are isolated

⇒ the Uα’s are bounded in H1.

Then we can assume that Kα → K∞ as α→ +∞. Still by the
3-dimensional blow-up analysis we get there need to be a point
where the mass of the vectorial Schrödinger operator K∞∆g + A is
nonpositive. By comparison principles, since −A is cooperative,
this implies that 1

K∞
A can’t be less than Λg . In other words, we

use again the 3-dimensional blow-up machinery, and get that

3− dim. blow-up machinery⇒ ∃x ∈ M, and ∃X ∈ Sp−1 s.t.

A(x).(X ,X ) ≥ K∞Λg (x) .

+ . . . U∞ ≡ 0.

We recover the H1-decomposition of the Uα’s since the Uα’s are
bounded in H1.
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In 3-space dimension,∫
M
|∇Bα|2dvg = S3/2 + o(1) .

By the splitting of the energy associated with Struwe’s (H1Dec),

Kα
def
= aα + bα

∫
M
|∇Uα|2dvg

= aα + bα
(√

KαkS
3/2 + o(1)

)
.

Passing to the limit α→ +∞, K∞ = a + bk
√
K∞S3/2, and then√

K∞ =
bkS3/2 +

√
b2k2S3 + 4a

2
.

There exist (see preceding slide) x ∈ M and X ∈ Sp−1 such that
A(x).(X ,X ) ≥ K∞Λg (x). By assumption A ≤ CΛg Idp in the sense
of bilinear forms. Then K∞ ≤ C , and we easily get that

a + bS3/2
√
Ck ≤ C .

This is exactly what Theorem 1 says. �
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VI. Proof of Corollary 1.

We want to prove that if A : M → Mp
s (R) is such that ∆g + 1

aA is
coercive, −A is cooperative, and

A(x) <

(
a +

1

2
b2S3 +

1

2
bS3/2

√
4a + b2S3

)
Λg (x)Idp

for all x ∈ M, in the sense of bilinear forms, where Λg > 0 is a
positive function such that ∆g + Λg has positive mass, then

(i) the Kirchhoff system (S) has a nonnegative nontrivial
C 2-solution,

(ii) ∀θ ∈ (0, 1), ∃C > 0 such that ‖Uα‖C2,θ ≤ C for all
sequences (aα)α and (bα)α converging to a and b, all sequences
(Aα)α of C 1-maps Aα : M → Mp

s (R) converging C 1 to A, and all
sequences (Uα)α of nonnegative solutions of (Sα).

The proof of (i) and (ii) is based on Theorem 1 showing that
Theorem 1 remains valid if we replace the 2?-exponent in (Sα) by
subcritical exponents pα ≤ 2?, pα → 2?.
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We consider(
aα + bα

p∑
j=1

∫
M
|∇uj |2dvg

)
∆gui +

p∑
j=1

Aαijuj = |U|pα−2 ui , (S̃α)

where aα → a, bα → b, Aα → A in C 1, and pα ≤ 2?, pα → 2? as
α→ +∞. Theorem 1 remains true : for any sequence (Uα)α of
nonnegative solutions of (S̃α), the Uα’s are bounded in H1 and, up
to a subsequence, the number k of bubbles they can have in their
H1-decomposition is s.t. a + bS3/2

√
Ck ≤ C , where C > 0 is such

that A ≤ CΛg Idp in the sense of bilinear forms. The subcritical
equations always have nonnegative nontrivial solutions (variational
arguments). By elliptic theory, it remains to prove that we can’t
have k ≥ 1. Corollary 1 holds true if a + bS3/2

√
C > C , and

a + bS3/2
√
C > C ⇔

C < a +
1

2
b2S3 +

1

2
bS3/2

√
4a + b2S3 .

The coercivity of ∆g + 1
aA implies that the limit profile U∞ 6≡ 0.

This proves Corollary 1. �
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VII. Proof of Theorem 2 (easy part).

We mix here two type of blow-up arguments. One is the
n-dimensional extension of the 3-dim. blow-up argument used to
prove Theorem 1. The other one comes from the C 0-theory
analysis for blow-up. Let (aα)α, (bα)α, (Aα)α be such that
aα → a, bα → b, Aα → A in C 1 as α→ +∞. Let (Uα)α be a
sequence of nonnegative nontrivial solutions of (Sα). Then,

(Arg.1) n − dim. extension of the 3-dim. blow-up theory

(bounded stability) ⇒ the Uα’s are bounded in H1.

Then we get H1-decompositions for the Uα’s, and

(Arg.2) C 0 − blow-up theory + Analytic Stability ⇒ if k ≥ 1

then U∞ ≡ 0 (n= 4,5) + ∃x ∈ M,∃X ∈ Sp−1
+ s.t.〈(

A(x)− n − 2

4(n − 1)
K∞Sg (x)Idp

)
(X ),X

〉
Rp

= 0 ,

where K∞ is the limit of the Kα’s defined as before.
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By assumption

A ≡ n − 2

4(n − 1)
Sg Idp

and thus (by the Analytic Stability theory) we need to have that
K∞ = 1. Struwe’s H1-decomposition (and U∞ ≡ 0) implies that

Kα
def
= aα + bα

∫
M
|∇Uα|2dvg

= a + bkSn/2K
2

2?−2
α + o(1) .

Then

K∞ = a + bkSn/2K
2

2?−2
∞ ,

and if K∞ = 1, this implies that

1− a

b
= Sn/2k .

In other words, 1−a
b ∈ Sn/2N? if the Uα’s blow up. This proves

Theorem 2. �
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VIII. The red boxes.

We discuss the red lines in the above proofs. There are two results
which stand behind these red lines. The first one is attached to the
notion of bounded stability and has its origin in the 3-dimensional
proof of the Yamabe compactness (Schoen, Li-Zhu). The second
one is attached to the notion of analytic stability and goes back to
the C 0-theory by Druet, H., and Robert. Consider

∆gui +

p∑
j=1

Aijuj = |U|2
?−2 ui (Smod)

and perturbations of this system like

∆gui +

p∑
j=1

Aαijuj = |U|pα−2 ui , (Sα1,mod)

∆gui +

p∑
j=1

Aαijuj = |U|2
?−2 ui , (Sα2,mod)

where pα ≤ 2?, pα → 2?, and Aα → A in C 1
(
M,Mp

s (R)
)
.
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Theorem B : (H.-Thizy, (Sα1,mod). Druet-H.-Vétois, 2010, (Sα2,mod).)

Let (Mn, g) be a smooth compact Riemannian manifold of
dimension n ≥ 3, p ≥ 1 be an integer, and A : M → Ms

p(R) be a
C 1-map satisfying that

A <
n − 2

4(n − 1)
Sg Idp (1)

in M in the sense of bilinear forms. When n = 3 assume also that
∆g + A is coercive and that −A is cooperative. Then, for any
θ ∈ (0, 1), there exists C > 0 such that ‖Uα‖C2,θ ≤ C for all
sequences (Aα)α of C 1-maps Aα : M → Mp

s (R) converging C 1 to
A, all sequences (pα)α of subcritical/critical powers converging to
2?, and all sequences (Uα)α of nonnegative solutions of (Sα1,mod).

In particular, for any sequence (Aα)α of C 1-maps converging C 1 to
A, any sequence (pα)α of subcritical powers converging to 2?, and
any sequence (Uα)α of nonnegative solutions of (Sα1,mod), a

subsequence of the Uα’s converge C 2 to a solution U∞ of (Smod).
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The blow-up analysis behind this theorem is a one bubble analysis.
First we prove that blow-up points are isolated, then that we have
a finite number of isolated bubbles carrying minimal energy. We
conclude with minimum Aubin-Schoen energy type arguments. We
eliminate the existence of bubbles thanks to the positive mass
theorem when n = 3 (Schoen type conclusion), or when the
Potential < Geometric Potential (Aubin type conclusion) when
n ≥ 4.

In particular : the potentials in this analysis need to be “small”.
This is the meaning of (1) in Theorem B.

Theorem B when p = 1 goes back to Schoen, Li-Zhu (n = 3) and
Druet (n ≥ 4).

The equality case in (1) (Yamabe equation) has been fully
adressed and solved in a series of papers by Khuri-Marques-Schoen
and Brendle-Marques (surprising unexpected dimensional answer).
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The second kind of blow-up approach (the analytic stability
approach) is a multi bubble analysis. It starts with the C 0-theory
for blow-up (Druet-H.-Robert, 2004), building on the H1-theory
(Struwe, 84). It allows large potentials.

There is a price to pay : the approach deals with sequences of
solutions which are bounded in H1, and it is restricted to
(Sα2,mod)-perturbations. These restrictions are necessary :

(i) (Chen-Wei-Yan, 2011) for any λ > n(n−2)
4 there exists in Sn,

n ≥ 5, sequences (uα)α of positive smooth solutions of
∆guα + λuα = u2?−1

α such that ‖uα‖H1 → +∞.

(ii) (Micheletti-Pistoia-Vétois, 2009) On any closed n-manifold,
n ≥ 4, there are potentials h > n−2

4(n−1)Sg for which the equations

∆guα + huα = u2?−1−εα
α possess blowing-up positive solutions uα

with εα → 0.

We easily pass from (i) and (ii) to the vectorial setting with the
opposite condition A > n−2

4(n−1)Sg Idp.
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Theorem C : (Druet-H., 2009. Simplified form.)

Let (Mn, g) be a smooth compact Riemannian manifold of
dimension n ≥ 4 (and n 6= 6), p ≥ 1 be an integer, and
A : M → Ms

p(R) be a C 1-map satisfying that

(H) ∆g + A is coercive,

(H ′) ∀x ∈ M, A(x)− n−2
4(n−1)Sg (x)Idp does not possess isotropic

vectors.

Then, for any θ ∈ (0, 1), and any Λ > 0, there exists C > 0 such
that ‖Uα‖C2,θ ≤ C for all sequences (Aα)α of C 1-maps
Aα : M → Mp

s (R) converging C 1 to A, and all sequences (Uα)α of
nonnegative solutions of (Sα2,mod) such that ‖Uα‖H1 ≤ Λ for all α.

In particular, for any sequence (Aα)α of C 1-maps converging C 1 to
A, and any H1-bounded sequence (Uα)α of nonnegative solutions
of (Sα2,mod), a subsequence of the Uα’s converge C 2 to a solution
U∞ of (Smod).
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The point with Theorem C is that we can deal with large A’s ! The
theorem accepts the opposite inequality A > n−2

4(n−1)Sg Idp.

The blow-up analysis behind Theorem C is a multi-bubble analysis.
We start with the H1-decomposition and get immediately all
blow-up points. The C 0-theory makes that we control in the
pointwise sense our sequence (Uα)α of solutions in terms of the
leading H1-terms (like if Rα ≡ 0). The interaction of bubbles is
controlled by the notion of the range of influence of bubbles
(Druet). We conclude using an exterior Pohozaev identity.

The main issue with the Kirchhoff equation in high dim is that
sequences of solutions of the (Sα)’s are automatically bounded in
H1 when n ≥ 5, and by Theorem B, they are also automatically
bounded in H1 when n = 4 and Sg > 0. We can play with both the
red boxes Theorem B and Theorem C and get Theorem B type
results by using (the more precise) Theorem C (compare Theorem
2 w.r.t. Theorem 1).
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Thank you for your attention !
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